In today's world, digital image storage and transmission play an essential role,where images are mainly involved in data transfer. Digital images usually take large storage space and bandwidth for transmission, so image compression is important in data communication. This paper discusses a unique and novel lossy image compression approach. Exactly 50% of image pixels are encoded, and other 50% pixels are excluded. The method uses a block approach. Pixels of the block are transformed with a novel transform. Pixel nibbles are mapped as a single bit in a transform table generating more zeros, which helps achieve compression. Later, inverse transform is applied in reconstruction, and a single bit value from the table is remapped into pixel nibbles. With these nibbles, pixel values of the block are reconstructed without any loss. The average method is used in reconstruction of excluded pixels. This approach achieves better quality in reconstructed test images at lower PSNR values ranging from 33dB to 44dB. Compression ratio achieved is more than 2. Correctness ratio achieved by proposed method is more than 0.5.
In this paper, a simple medical image compression technique is proposed, that based on utilizing the residual of autoregressive model (AR) along with bit-plane slicing (BPS) to exploit the spatial redundancy efficiently. The results showed that the compression performance of the proposed techniques is improved about twice on average compared to the traditional autoregressive, along with preserving the image quality due to considering the significant layers only of high image contribution effects.
In this paper, we have employed a computation of three technique to reduce the computational complexity and bit rate for compressed image. These techniques are bit plane coding based on two absolute values, vector quantization VQ technique using Cache codebook and Weber's low condition. The experimental results show that the proposed techniques achieve reduce the storage size of bit plane and low computational complexity.
JPEG is most popular image compression and encoding, this technique is widely used in many applications (images, videos and 3D animations). Meanwhile, researchers are very interested to develop this massive technique to compress images at higher compression ratios with keeping image quality as much as possible. For this reason in this paper we introduce a developed JPEG based on fast DCT and removed most of zeros and keeps their positions in a transformed block. Additionally, arithmetic coding applied rather than Huffman coding. The results showed up, the proposed developed JPEG algorithm has better image quality than traditional JPEG techniques.
Nowadays, the advances in information and communication technologies open the wide door to realize the digital world’s dream. Besides, within the clear scientific scope in all fields, especially the medical field, it has become necessary to harness all the scientific capabilities to serve people, especially in medical-related services. The medical images represent the basis of clinical diagnosis and the source of telehealth and teleconsultation processes. The exchange of these images can be subject to several challenges, such as transmission bandwidth, time delivery, fraud, tampering, modifying, privacy, and more. This paper will introduce an algorithm consisting a combination of compression and encryption techniques to meet such chall
... Show More