This study included partial purification of the lipase enzyme from the karnel of the pecan nut. After applying ion exchange chromatography technique using CM-Cellulose, two lipase isoenzymes were observed with specific activity values of 2.66 and 1.7 units/mg protein. The highest activity of both isoenzymes appeared at the optimum pH values of 8 and 6 and at temperatures of 40 and 50 °C, respectively. A pure single band was obtained by using electrophoresis technique and it was found that the approximate molecular weight was 42 kDa for the two isoenzymes. The study dealt with the preparation of the diester compound 1,4-diacetoxybenzene, which was diagnosed by GC-MS and 1H NMR spectrometry. When studying the inhibition mode, the above compound showed a competitive inhibition of the lipase, as the value of Km increased from 0.013 to 2.857 mM, and Vmax was 0.25 enzymatic units / ml / min. Inhibition constant Ki was calculated and its value was 0.0319 mM. Pomegranate peel extracts with chloroform and ethyl acetate revealed an activating effect on lipase. This research aims to detect the presence of lipase in the pecan nut karnel and purify it by biochemical methods to know its properties and molecular weight. Then we attempted to inhibit it with a laboratory-prepared compound that has a structure similar to the basic substance on which the enzyme works.
In the present work, classification of radioactive wastes based on Annual Intake (AI) values is studied. Where the characterization of radionuclides was done by hand held GeLi detector with an overall efficiency better than 42%. It was noted the most predominant contaminant are Cs-137, Co-60 and Pa-234.The radioactive waste in disposal silo has been divided into five categories according to the harmful effect of radionuclides.For the purpose of storageradioactive wastein a safe manner, it wassuggesteda new method by shielding radioactive waste in each category with concrete;where the thickness of shielding is the time required to reduce the annual dose to 10%.
Ni-Co-Mn-Mg ferrite nanoparticles with the formula (Ni,Co)xMn0.25-xMg0.75Fe2O4 were synthesized in this work by employing the sol-gel auto-combustion process, with nitrates used as the cations source and citric acid (C6H8O7) as the combustion agent. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and a vibrating sample magnetometer (VSM) were used to characterize the structural, morphological, and magnetic properties of ferrite powders. The XRD measurements showed crystallite sizes ranging between 24 - 28 nm. The FE-SEM images show the presence of agglomeration as well as a non-homogeneous distribution of the samples. On the other hand, the stoichiometry of the react
... Show Moreتوصيف الاساليب الارهابية وسبل مواجهتها
In this work the fabrication and characterization of poly(3-hexylthiophene) P3HT-metallic nanoparticles (Ag, Al). Pulsed Laser Ablation (PLA) technique was used to synthesis the nanoparticles in liquid. The Fourier Transformer Infrared (FTIR) for all samples indicate the chemical interaction between the polymer and the nanoparticles. Scanning Electron Microscopic (SEM) analysis showed the particle size for P3HT-AgNps samples between 44.50 nanometers as well the spherical structure. While for P3HT-AlNps samples was flakes shape. Energy Dispersive X-ray (EDX) spectra show the existing of amount of metallic nanoparticles.
Isradipine belong to dihydropyridine (DHP) class of calcium channel blockers (CCBs). It is used in the treatment of hypertension, angina pectoris, in addition to Parkinson disease. It goes under the BCS class II drug (low solubility-high permeability). The drug will experience extensive first-pass metabolism in liver, therefore, oral bio-availability will be approximately15 to 24 %.
The aim of this study was to formulate and optimize a stable nanoparticles of a highly hydrophobic drug, isradipine by anti-solvent microprecipitation Method to achieve the higher in vitro dissolution rate, so that it will be absorbed by intestinal lymphatic transport in order to avoid hepatic first-pass metabolism&nbs
... Show MoreFelodipine is a calcium-channel blocker with low aqueous solubility and bioavailability. Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE) is one of the popular methods that has been used to solve the dispersibility problems of many drugs. Felodipine was formulated as a NE utilizing oleic acid as an oil phase, tween 80 and tween 60 as surfactants and ethanol as a co-surfactant. Eight formulas were prepared, and different tests were performed to ensure the stability of the NEs, such as particle size, polydispersity index, zeta potential, dilution test, drug content, viscosity and in-vitro drug release. Result
... Show MoreThe influence of annealing on quaternary compound Ag0.9Cu0.1InSe2 (ACIS) thin film is considered a striking semiconductor for second-generation solar cells. The film deposited by thermal evaporation with a thickness of about 700 nm at R.T and vacuum annealing at temperatures (373,473) K for 1 hour. It was deposited in a vacuum of 4.5*10-5 Torr on a glass substrate. From XRD and AFM analysis, it is evident that Ag0.9Cu0.1InSe2 films are polycrystalline in nature, having ideal stoichiometric composition. Structural analysis indicated that annealing the films following the deposition resulted in the increasing polycrystalline phase with the preferred orientation along (112) direction. , increasing crystallite size and average grain size
... Show MoreA new series polymers was synthesized from reaction starting material Bisacodyl A or [(2-Pyridinylmethylene) di-4, 1-phenylene di acetate] with hydrogen bromide, then the products were polymerized by addition polymerization from used adipoyl and glutaroyl chloride. The structure of these compounds was characterized by FT-IR, melting points, TLC, X-Ray, DSC and 1H-NMR for starting material. These compounds were also screened for their antibacterial activists?
In this study, polymeric ultrafiltration (UF) membranes were prepared by phase inversion method to obtain both antibacterial and organic antifouling properties. The membranes were cast from a solution of polyvinylidene fluoride (PVDF) and formative silver (Ag) nanoparticles were successfully immobilized on a polymer. This was done using a solvent N, N-dimethylformamide (DMF) which is a solvent for the PVDF polymer meanwhile it is a reducing agent for silver ion. The effect of silver nanoparticles additives on the performance of polymeric ultrafiltration membrane was verified. Chemical composition and morphology of the surfaces of the membranes were characterized by Fourier transform infrared spectroscopy
... Show More