Twitter popularity has increasingly grown in the last few years, influencing life’s social, political, and business aspects. People would leave their tweets on social media about an event, and simultaneously inquire to see other people's experiences and whether they had a positive/negative opinion about that event. Sentiment Analysis can be used to obtain this categorization. Product reviews, events, and other topics from all users that comprise unstructured text comments are gathered and categorized as good, harmful, or neutral using sentiment analysis. Such issues are called polarity classifications. This study aims to use Twitter data about OK cuisine reviews obtained from the Amazon website and compare the effectiveness of three commonly used supervised learning classifiers, Naive Bayes, Logistic Regression, and Support Vector Machine. This is achieved by using two method of feature selection involving count Vectorizer and Term-Frequency-Inverse Data Frequency. The findings showed that the support vector machine classifier had achieved the highest accuracy of 91%, by feature selection: Count Vectorizer. But it is time consuming. For both accuracy and execution time concentrates, logistic regression is recommended.
Age, hypertension, and diabetes can cause significant alterations in arterial structure and function, including changes in lumen diameter (LD), intimal-medial thickness (IMT), flow velocities, and arterial compliance. These are also considered risk markers of atherosclerosis and cerebrovascular disease. A difference between right and left carotid artery blood flow and IMT has been reported by some researchers, and a difference in the incidence of nonlacunar stroke has been reported between the right and left brain hemispheres. The aim of this study was to determine whether there are differences between the right and left common carotid arteries and internal carotid arteries in patient
This paper uses Artificial Intelligence (AI) based algorithm analysis to classify breast cancer Deoxyribonucleic (DNA). Main idea is to focus on application of machine and deep learning techniques. Furthermore, a genetic algorithm is used to diagnose gene expression to reduce the number of misclassified cancers. After patients' genetic data are entered, processing operations that require filling the missing values using different techniques are used. The best data for the classification process are chosen by combining each technique using the genetic algorithm and comparing them in terms of accuracy.
Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreMost Internet-tomography problems such as shared congestion detection depend on network measurements. Usually, such measurements are carried out in multiple locations inside the network and relied on local clocks. These clocks usually skewed with time making these measurements unsynchronized and thereby degrading the performance of most techniques. Recently, shared congestion detection has become an important issue in many computer networked applications such as multimedia streaming and
peer-to-peer file sharing. One of the most powerful techniques that employed in literature is based on Discrete Wavelet Transform (DWT) with cross-correlation operation to determine the state of the congestion. Wavelet transform is used as a de-noisin
This study entitled (The legal framework for the process of monitoring the electoral register (a comparative study between Egypt and Iraq)) shows the importance of monitoring the right to participate in political life and public affairs، as all electoral legislation in democratic countries is keen on the integrity، integrity and legitimacy of elections، and one of the most important guarantees of this Existence of effective oversight at every stage of the electoral process، including the preliminary stage. Oversight is the process of collecting and inventorying information about the electoral processes in all its stages، by following an organized mechanism in collecting information on each stage، which is then used to issue o
... Show MoreThis research analyses the tweets of Iraqi politicians (leaders) that took place simultaneously with the formation of the Iraqi government after the elections in 2018. The formation of the Iraqi government was considered one of the most critical issues that emerged in the political process to which the Iraqi media as well as social networking sites paid considerable attention. In this regard, Iraqi political leaders have published many tweets concerning the formation of the government, some of them have caused great controversy in the political climate. As Twitter is one of the most digital platforms that have been widely used on the global scale in recent years, politicians have employed it to publish their opinions, ideas, and to excha
... Show MoreWorld statistics declare that aging has direct correlations with more and more health problems with comorbid conditions. As healthcare communities evolve with a massive amount of data at a faster pace, it is essential to predict, assist, and prevent diseases at the right time, especially for elders. Similarly, many researchers have discussed that elders suffer extensively due to chronic health conditions. This work was performed to review literature studies on prediction systems for various chronic illnesses of elderly people. Most of the reviewed papers proposed machine learning prediction models combined with, or without, other related intelligence techniques for chronic disease detection of elderly patie
... Show MoreThis study aimed to identify the employment of the social networking platform «Twitter» in the 2016 presidential campaign led by the Republican candidate, Donald Trump; and analyse his tweets through his personal account on «Twitter» for the period from: 10/ 8/2016 to: 11/ 8/2016 which represents the last month of the election campaign.
The study belongs to the type of descriptive studies using the analytical method through an analysis index that includes sub-categories and other secondary categories. The research has adopted the ordinary unit of information material (tweet) as an analysis unit for this purpose.
... Show More