Twitter popularity has increasingly grown in the last few years, influencing life’s social, political, and business aspects. People would leave their tweets on social media about an event, and simultaneously inquire to see other people's experiences and whether they had a positive/negative opinion about that event. Sentiment Analysis can be used to obtain this categorization. Product reviews, events, and other topics from all users that comprise unstructured text comments are gathered and categorized as good, harmful, or neutral using sentiment analysis. Such issues are called polarity classifications. This study aims to use Twitter data about OK cuisine reviews obtained from the Amazon website and compare the effectiveness of three commonly used supervised learning classifiers, Naive Bayes, Logistic Regression, and Support Vector Machine. This is achieved by using two method of feature selection involving count Vectorizer and Term-Frequency-Inverse Data Frequency. The findings showed that the support vector machine classifier had achieved the highest accuracy of 91%, by feature selection: Count Vectorizer. But it is time consuming. For both accuracy and execution time concentrates, logistic regression is recommended.
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreThe work in this paper focuses on solving numerically and analytically a nonlinear social epidemic model that represents an initial value problem of ordinary differential equations. A recent moking habit model from Spain is applied and studied here. The accuracy and convergence of the numerical and approximation results are investigated for various methods; for example, Adomian decomposition, variation iteration, Finite difference and Runge-Kutta. The discussion of the present results has been tabulated and graphed. Finally, the comparison between the analytic and numerical solutions from the period 2006-2009 has been obtained by absolute and difference measure error.
This research includes the use of an artificial intelligence algorithm, which is one of the algorithms of biological systems which is the algorithm of genetic regulatory networks (GRNs), which is a dynamic system for a group of variables representing space within time. To construct this biological system, we use (ODEs) and to analyze the stationarity of the model we use Euler's method. And through the factors that affect the process of gene expression in terms of inhibition and activation of the transcription process on DNA, we will use TF transcription factors. The current research aims to use the latest methods of the artificial intelligence algorithm. To apply Gene Regulation Networks (GRNs), we used a progr
... Show MoreThe important device in the Wireless Sensor Network (WSN) is the Sink Node (SN). That is used to store, collect and analyze data from every sensor node in the network. Thus the main role of SN in WSN makes it a big target for traffic analysis attack. Therefore, securing the SN position is a substantial issue. This study presents Security for Mobile Sink Node location using Dynamic Routing Protocol called (SMSNDRP), in order to increase complexity for adversary trying to discover mobile SN location. In addition to that, it minimizes network energy consumption. The proposed protocol which is applied on WSN framework consists of 50 nodes with static and mobile SN. The results havw shown in each round a dynamic change in the route to reach mobi
... Show MoreThe main objective of e-learning platforms is to offer a high quality instructing, training and educational services. This purpose would never be achieved without taking the students' motivation into consideration. Examining the voice, we can decide the emotional states of the learners after we apply the famous theory of psychologist SDT (Self Determination Theory). This article will investigate certain difficulties and challenges which face e-learner: the problem of leaving their courses and the student's isolation.
Utilizing Gussian blending model (GMM) so as to tackle and to solve the problems of classification, we can determine the learning abnormal status for e-learner. Our framework is going to increase the students’ moti
Atenolol was used with povidone iodine to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between atenolol and povidone iodine in an aqueous medium. Optimum parameters was studied to increase the sensitivity development of method. Calibration graph was linear in the range of 2-19 mmol/L for cell A and 5-19 mmol/L for cell B. Limit of detection 146.4848 ng/55 µL and 2.6600 µg/200 µL respectively to cell A and cell B. Correlation coefficient (r) 0.9957 for cell A and 0.9974 for cell. Relative standard deviation (RSD %) was lower than 1%, (n=8) for the determination of
... Show MoreThis study offers the elastic response of the variable thickness functionally graded (FG) by single walled carbon nanotubes reinforced composite (CNTRC) moderately thick cylindrical panels under rotating and transverse mechanical loadings. It’s considered that, three kinds of distributions of carbon nanotubes which are uniaxial aligned in the longitudinal direction and two functionally graded in the transverse direction of the cylindrical panels. Depending on first order shear deformation theory (FSDT), the governing equations can be derived. The partial differential equations are solved by utilizing the technique of finite element method (FEM) with a program has been built by using FORTRAN 95. The results are calculat
... Show MoreThe need for a flexible and cost effective biometric security system is the inspired of this paper. Face recognition is a good contactless biometric and it is suitable and applicable for Wireless Sensor Network (WSN). Image processing and image communication is a challenges task in WSN due to the heavy processing and communication that reduce the life time of the network. This paper proposed a face recognition algorithm on WSN depending on the principles of the unique algorithm that hold the capacity of the network to the sink node and compress the communication data to 89.5%. An efficient hybrid method is introduced based upon the advantage of Zak transform to offprint the farthest different features of the face and Eigen face method to
... Show MoreThe objectives of this research are to determine and find out the reality of crops structure of greenhouses in association of Al-Watan in order to stand on the optimal use of economic resources available for the purpose of reaching a crop structure optimization of the farm that achieves maximize profit and gross and net farm incomes , using the method of linear programming to choose the farm optimal plan with the highest net income , as well as identifying production plans farm efficient with (income - deviation) optimal (E-A) of the Association and derived, which takes into account the margin risk wich derived from each plan using the model( MOTAD), as a model of models of linear programming alternative programming m
... Show More