This review explores the Knowledge Discovery Database (KDD) approach, which supports the bioinformatics domain to progress efficiently, and illustrate their relationship with data mining. Thus, it is important to extract advantages of Data Mining (DM) strategy management such as effectively stressing its role in cost control, which is the principle of competitive intelligence, and the role of it in information management. As well as, its ability to discover hidden knowledge. However, there are many challenges such as inaccurate, hand-written data, and analyzing a large amount of variant information for extracting useful knowledge by using DM strategies. These strategies are successfully applied in several applications as data warehouses, predictive analytics, business intelligence, bioinformatics, and decision support systems. There are many DM techniques that are applied for disease diagnostics and treatment, for example cancer diseases that are investigated using multi-layer perception, Naïve Bayes, Decision Tree, Simple Logistic, K-Nearest Neighbor. As will be explored in this paper. Consequently, for future perspectives there is research in progress for real Iraqi data of Breast Cancer using Data Mining techniques, specifically the Tree decision and K-nearest algorithms.
The great scientific progress has led to widespread Information as information accumulates in large databases is important in trying to revise and compile this vast amount of data and, where its purpose to extract hidden information or classified data under their relations with each other in order to take advantage of them for technical purposes.
And work with data mining (DM) is appropriate in this area because of the importance of research in the (K-Means) algorithm for clustering data in fact applied with effect can be observed in variables by changing the sample size (n) and the number of clusters (K)
... Show MoreEven though image retrieval is considered as one of the most important research areas in the last two decades, there is still room for improvement since it is still not satisfying for many users. Two of the major problems which need to be improved are the accuracy and the speed of the image retrieval system, in order to achieve user satisfaction and also to make the image retrieval system suitable for all platforms. In this work, the proposed retrieval system uses features with spatial information to analyze the visual content of the image. Then, the feature extraction process is followed by applying the fuzzy c-means (FCM) clustering algorithm to reduce the search space and speed up the retrieval process. The experimental results show t
... Show MoreTo date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip
... Show MoreTourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
Referral techniques are normally employed in internet business applications. Existing frameworks prescribe things to a particular client according to client inclinations and former high evaluations. Quite a number of methods, such as cooperative filtering and content-based methodologies, dominate the architectural design of referral frameworks. Many referral schemes are domain-specific and cannot be deployed in a general-purpose setting. This study proposes a two-dimensional (User × Item)-space multimode referral scheme, having an enormous client base but few articles on offer. Additionally, the design of the referral scheme is anchored on the and articles, as expressed by a particular client, and is a combination of affi
... Show MoreBusiness organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a
... Show More