This paper uses Artificial Intelligence (AI) based algorithm analysis to classify breast cancer Deoxyribonucleic (DNA). Main idea is to focus on application of machine and deep learning techniques. Furthermore, a genetic algorithm is used to diagnose gene expression to reduce the number of misclassified cancers. After patients' genetic data are entered, processing operations that require filling the missing values using different techniques are used. The best data for the classification process are chosen by combining each technique using the genetic algorithm and comparing them in terms of accuracy.
In this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm
Mining association rules is a popular and well-studied method of data mining tasks whose primary aim is the discovers of the correlation among sets of items in the transactional databases. However, generating high- quality association rules in a reasonable time from a given database has been considered as an important and challenging problem, especially with the fast increasing in database's size. Many algorithms for association rules mining have been already proposed with promosing results. In this paper, a new association rules mining algorithm based on Bees Swarm Optimization metaheuristic named Modified Bees Swarm Optimization for Association Rules Mining (MBSO-ARM) algorithm is proposed. Results show that the proposed algorithm can
... Show MoreThis paper proposes a new strategy to enhance the performance and accuracy of the Spiral dynamic algorithm (SDA) for use in solving real-world problems by hybridizing the SDA with the Bacterial Foraging optimization algorithm (BFA). The dynamic step size of SDA makes it a useful exploitation approach. However, it has limited exploration throughout the diversification phase, which results in getting trapped at local optima. The optimal initialization position for the SDA algorithm has been determined with the help of the chemotactic strategy of the BFA optimization algorithm, which has been utilized to improve the exploration approach of the SDA. The proposed Hybrid Adaptive Spiral Dynamic Bacterial Foraging (HASDBF)
... Show MoreIn this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm.
Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.
In this paper, a method for hiding cipher text in an image file is introduced . The
proposed method is to hide the cipher text message in the frequency domain of the image.
This method contained two phases: the first is embedding phase and the second is extraction
phase. In the embedding phase the image is transformed from time domain to frequency
domain using discrete wavelet decomposition technique (Haar). The text message encrypted
using RSA algorithm; then Least Significant Bit (LSB) algorithm used to hide secret message
in high frequency. The proposed method is tested in different images and showed success in
hiding information according to the Peak Signal to Noise Ratio (PSNR) measure of the the
original ima