Nowadays, the advances in information and communication technologies open the wide door to realize the digital world’s dream. Besides, within the clear scientific scope in all fields, especially the medical field, it has become necessary to harness all the scientific capabilities to serve people, especially in medical-related services. The medical images represent the basis of clinical diagnosis and the source of telehealth and teleconsultation processes. The exchange of these images can be subject to several challenges, such as transmission bandwidth, time delivery, fraud, tampering, modifying, privacy, and more. This paper will introduce an algorithm consisting a combination of compression and encryption techniques to meet such challenges in the medical image field. First, compression is done by applying the Adaptive Arithmetic Coding (AAC) technique and controllable frequency quantization process in the Discrete Wavelet Transform. After that, the encryption process is applied using RSA and SHA-256 algorithms to encrypt the compressed file and to create the digital signature. The performance analysis has shown that the algorithm can produce high compression ratio with good image quality, whereas range of PSNR near 45 dB and SIM is 0.88 as average values. For the security analysis, we have adopted data encryption and digital signature to guarantee the main data security services including integrity, authentication, and confidentiality, making the algorithm secure against passive or active attacks.
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreObjective(s): To assess the burden of mothers` care for child with colostomy and find out relationships between child and mother socio-demographic data with mothers` burden. Methodology: a descriptive study was conducted from 1 August 2013 to 1 September 2014. The sample consisted of 100 children and their mothers at Baghdad Teaching hospital in Baghdad city. A questionnaire was prepared based on the previous literature review, meeting mothers of children with colostomy, and the Zarit Burden Interview scale. Data has collected through the application of questionnaire and interview techniques. Results: T
Undoped and Al-doped CdO thin films have been prepared by vacuum thermal evaporation on glass substrate at room temperature for various Al doping ratios (0.5, 1 and 2)wt.% . The films are characterized by XRD and AFM surface morphology properties. XRD analysis showed that CdO:Al films are highly polycrystalline and exhibit cubic crystal structure of lattice constant averaged to 0.4696 nm with (111) preferred orientation. However, intensity of all peaks rapidly decreases which indicates that the crystallinity decreases with the increase of Al dopant. The grain size decreases with Al content (from 60.81 to 48.03 nm). SEM and AFM were applied to study the morphology an
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. T
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. The photoelectrochemical response of TNTAs was evaluated
... Show MoreAutism is a lifelong developmental deficit that affects how people perceive the world and interact with each others. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. The commonly used tools for analyzing the dataset of autism are FMRI, EEG, and more recently "eye tracking". A preliminary study on eye tracking trajectories of patients studied, showed a rudimentary statistical analysis (principal component analysis) provides interesting results on the statistical parameters that are studied such as the time spent in a region of interest. Another study, involving tools from Euclidean geometry and non-Euclidean, the trajectory of eye patients also showed interesting results. In this
... Show More