Medical Ultrasound (US) has many features that make it widely used in the world. These features are safety, availability and low cost. However, despite these features, the ultrasound suffers from problems. These problems are speckle noise and artifacts. In this paper, a new method is proposed to improve US images by removing speckle noise and reducing artifacts to enhance the contrast of the image. The proposed method involves algorithms for image preprocessing and segmentation. A median filter is used to smooth the image in the pre-processing. Additionally, to obtain best results, applying median filter with different kernel values. We take the better output of the median filter and feed it into the Gaussian filter, which then feeds the output of the Gaussian filter into histogram equalization to improve image visualization. The segmentation is done by thresholding and region growing segmentation. The value of threshold 128 was found to be better after we tested many values of thresholding. This value of thresholding combined with region growing gave accurate result segmentation of images. This paper demonstrates how image noise, artifacts and techniques were used effectively to improve image quality, and the analysis of performance of various techniques.
A super pixel can be defined as a group of pixels, which have similar characteristics, which can be very helpful for image segmentation. It is generally color based segmentation as well as other features like texture, statistics…etc .There are many algorithms available to segment super pixels like Simple Linear Iterative Clustering (SLIC) super pixels and Density-Based Spatial Clustering of Application with Noise (DBSCAN). SLIC algorithm essentially relay on choosing N random or regular seeds points covering the used image for segmentation. In this paper Split and Merge algorithm was used instead to overcome determination the seed point's location and numbers as well as other used parameters. The overall results were better from the SL
... Show MoreBackground: image processing of medical images is major method to increase reliability of cancer diagnosis.
Methods: The proposed system proceeded into two stages: First, enhancement stage which was performed using of median filter to reduce the noise and artifacts that present in a CT image of a human lung with a cancer, Second: implementation of k-means clustering algorithm.
Results: the result image of k-means algorithm compared with the image resulted from implementation of fuzzy c-means (FCM) algorithm.
Conclusion: We found that the time required for k-means algorithm implementation is less than that of FCM algorithm.MATLAB package (version 7.3) was used in writing the programming code of our w
Image segmentation is a basic image processing technique that is primarily used for finding segments that form the entire image. These segments can be then utilized in discriminative feature extraction, image retrieval, and pattern recognition. Clustering and region growing techniques are the commonly used image segmentation methods. K-Means is a heavily used clustering technique due to its simplicity and low computational cost. However, K-Means results depend on the initial centres’ values which are selected randomly, which leads to inconsistency in the image segmentation results. In addition, the quality of the isolated regions depends on the homogeneity of the resulted segments. In this paper, an improved K-Means
... Show MoreA snake is an energy-minimizing spline guided by external
constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and motion tracking. We have used snakes successfully for segmentation, in which user-imposed constraint forces guide the snake near features of interest (anatomical structures). Magnetic Resonance Image (MRI) data set and Ultrasound images are used for our experiments.
... Show MoreIn this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.
Ultrasound is a mechanical energy which can generate altering zones of compression and rarefaction along its path in the tissues. Ultrasound imaging can provide a real time screening for blood and multiple organs to aiding the diagnostic and treatment. However, ultrasound has the potential to deposit energy in the blood and tissues causing bio effects which is depending on ultrasound characteristics that including frequency and the amount of intensity. These bio effects include either a stable cavitation presented non thermal effects or inertial cavitation of harmful effect on the tissues. The non-thermal cavitation can add features in diagnostic imaging and treatment more than the inertial cavitation. Ultrasound Contrast agents are a micro
... Show MoreMedical image security is possible using digital watermarking techniques. Important information is included in a host medical image in order to provide integrity, consistency, and authentication in the healthcare information system. This paper introduces a proposed method for embedding invisible watermarking in the 3D medical image. The cover medical image used is DICOM which consists of a number of slices, each one representing a sense, firstly must separate the ROI (Region of Interest) and NROI (Not Region Of Interest) for each slice, the separation process performed by the particular person who selected by hand the ROI. The embedding process is based on a key generated from Arnold's chaotic map used as the position of a pixel in
... Show MoreOne of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show More
the Objective of study is to measure the quality of medical service level, in the Iraq public hospitals ,presented by special words ,private hospitals, and compare between them, by knowing the level of recipients satisfaction of medical service for all dimensions of quality service, and then measuring satisfaction with the quality of medical service as a whole for both of them, which have been prepared in questionnaire form, included two main directions, first to determine the level of satisfaction when, recipients of medical service is not dimensions quality of service in accordance with the Scale Servqual by (Parasurman et .al 1988), consisting of five di
... Show More