In this article, we introduce and study two new families of analytic functions by using strong differential subordinations and superordinations associated with Wanas differential operator/. We also give and establish some important properties of these families.
In this paper, we model the spread of coronavirus (COVID -19) by introducing stochasticity into the deterministic differential equation susceptible -infected-recovered (SIR model). The stochastic SIR dynamics are expressed using Itô's formula. We then prove that this stochastic SIR has a unique global positive solution I(t).The main aim of this article is to study the spread of coronavirus COVID-19 in Iraq from 13/8/2020 to 13/9/2020. Our results provide a new insight into this issue, showing that the introduction of stochastic noise into the deterministic model for the spread of COVID-19 can cause the disease to die out, in scenarios where deterministic models predict disease persistence. These results were also clearly ill
... Show MoreThis paper is concerned with the existence of a unique state vector solution of a couple nonlinear hyperbolic equations using the Galerkin method when the continuous classical control vector is given, the existence theorem of a continuous classical optimal control vector with equality and inequality vector state constraints is proved, the existence of a unique solution of the adjoint equations associated with the state equations is studied. The Frcéhet derivative of the Hamiltonian is obtained. Finally the theorems of the necessary conditions and the sufficient conditions of optimality of the constrained problem are proved.
This study focuses on studying an oscillation of a second-order delay differential equation. Start work, the equation is introduced here with adequate provisions. All the previous is braced by theorems and examplesthat interpret the applicability and the firmness of the acquired provisions
In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.
Some necessary and sufficient conditions are obtained that guarantee the oscillation of all solutions of two types of neutral integro-differential equations of third order. The integral is used in the sense of Riemann-Stieltjes. Some examples were included to illustrate the obtained results
This paper presents a numerical scheme for solving nonlinear time-fractional differential equations in the sense of Caputo. This method relies on the Laplace transform together with the modified Adomian method (LMADM), compared with the Laplace transform combined with the standard Adomian Method (LADM). Furthermore, for the comparison purpose, we applied LMADM and LADM for solving nonlinear time-fractional differential equations to identify the differences and similarities. Finally, we provided two examples regarding the nonlinear time-fractional differential equations, which showed that the convergence of the current scheme results in high accuracy and small frequency to solve this type of equations.
This paper aims to study the asymptotic stability of the equilibrium points of the index 2 and index 3 Hesenberg differential algebraic equations. The problem reformulated to an equivalent explicit differential algebraic equations system, so the asymptotic stability is easily investigated. The singular points such as impasse points and singularity induced bifurcation points are identified in this kind of differential algebraic equations by using conclusion of the explicit differential algebraic equations.
In this paper, we introduce new conditions to prove that the existence and boundedness of the solution by convergent sequences and convergent series. The theorem of Krasnoselskii, Lebesgue’s dominated convergence theorem and fixed point theorem are used to get some sufficient conditions for the existence of solutions. Furthermore, we get sufficient conditions to guarantee the oscillatory property for all solutions in this class of equations. An illustrative example is included as an application to the main results.
This paper aims to study the asymptotic stability of the equilibrium points of the index 2 and index 3 Hesenberg differential algebraic equations. The problem reformulated to an equivalent explicit differential algebraic equations system, so the asymptotic stability is easily investigated. The singular points such as impasse points and singularity induced bifurcation points are identified in this kind of differential algebraic equations by using conclusion of the explicit differential algebraic equations.
This paper concerns with the state and proof the existence and uniqueness theorem of triple state vector solution (TSVS) for the triple nonlinear parabolic partial differential equations (TNPPDEs) ,and triple state vector equations (TSVEs), under suitable assumptions. when the continuous classical triple control vector (CCTCV) is given by using the method of Galerkin (MGA). The existence theorem of a continuous classical optimal triple control vector (CCTOCV) for the continuous classical optimal control governing by the TNPPDEs under suitable conditions is proved.