Preferred Language
Articles
/
ijs-4837
Short Answers Assessment Approach based on Semantic Network

      Finding similarities in texts is important in many areas such as information retrieval, automated article scoring, and short answer categorization. Evaluating short answers is not an easy task due to differences in natural language. Methods for calculating the similarity between texts depend on semantic or grammatical aspects. This paper discusses a method for evaluating short answers using semantic networks to represent the typical (correct) answer and students' answers. The semantic network of nodes and relationships represents the text (answers). Moreover, grammatical aspects are found  by measuring the similarity of parts of speech between the answers. In addition, finding hierarchical relationships between nodes in networks. The similarity is then calculated, and students' answers are evaluated. The best results are for weights (α = 0.1, = 0.6, γ = 0.3) = 1.82 from 5, giving more weight in nodes similarity by 6, least similarity by relationships by 3, and least similarity by parts of speech by 1.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 02 2021
Journal Name
Journal Of The College Of Languages (jcl)
Semantics of the Russian Verbs of Destruction in Contemporary Linguistics: Семантический Анализ Глаголов Деструкции Русского Языка В Современной Лингвистике

The article states that the Russian verbs of destruction belong to the lexical-semantic group of physical impact. They include verbs with the meaning of “damage” and “destroy”. It is emphasized that each of these groups is relatively independent; the cut line between them is fuzzy and arbitrary. It is postulated that when the object is completely destroyed, then the verb has the meaning of “destruction”,  and when the object is partially destroyed, then the  verb has the meaning of “damage”. It is this feature that individualizes the meaning of verbs. The study distinguishes between the groups and the nature of the object as- animate / inanimate. The object of the action of the “destruction” can only be inan

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Oct 15 2014
Journal Name
International Journal Of Advanced Research
A survey/ Development of Passive Optical Access Networks Technologies

The bandwidth requirements of telecommunication network users increased rapidly during the last decades. Optical access technologies must provide the bandwidth demand for each user. The passive optical access networks (PONs) support a maximum data rate of 100 Gbps by using the Orthogonal Frequency Division Multiplexing (OFDM) technique in the optical access network. In this paper, the optical broadband access networks with many techniques from Time Division Multiplexing Passive Optical Networks (TDM PON) to Orthogonal Frequency Division Multiplex Passive Optical Networks (OFDM PON) are presented. The architectures, advantages, disadvantages, and main parameters of these optical access networks are discussed and reported which have many ad

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Application
Suggested methods for prediction using semiparametric regression function

Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m

... Show More
Scopus
Preview PDF
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
A Design of a Hybrid Algorithm for Optical Character Recognition of Online Hand-Written Arabic Alphabets

     The growing relevance of printed and digitalized hand-written characters has necessitated the need for convalescent automatic recognition of characters in Optical Character Recognition (OCR). Among the handwritten characters, Arabic is one of those with special attention due to its distinctive nature, and the inherent challenges in its recognition systems. This distinctiveness of Arabic characters, with the difference in personal writing styles and proficiency, are complicating the effectiveness of its online handwritten recognition systems. This research, based on limitations and scope of previous related studies, studied the recognition of Arabic isolated characters through the identification o

... Show More
Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Plants Leaf Diseases Detection Using Deep Learning

     Agriculture improvement is a national economic issue that extremely depends on productivity. The explanation of disease detection in plants plays a significant role in the agriculture field. Accurate prediction of the plant disease can help treat the leaf as early as possible, which controls the economic loss. This paper aims to use the Image processing techniques with Convolutional Neural Network (CNN). It is one of the deep learning techniques to classify and detect plant leaf diseases. A publicly available Plant village dataset was used, which consists of 15 classes, including 12 diseases classes and 3 healthy classes.  The data augmentation techniques have been used. In addition to dropout and weight reg

... Show More
Scopus (8)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An Improved Cuckoo Search Algorithm for Maximizing the Coverage Range of Wireless Sensor Networks

The issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting r

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Diagnosis of Malaria Infected Blood Cell Digital Images using Deep Convolutional Neural Networks

     Automated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN

... Show More
Scopus (10)
Crossref (6)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Plant Archives
Tracking the existence of PAH in water resources around and away from Al-Ahdab Oil Field in Wasit Governorate of Iraq

Some major pollutants of polycyclic aromatic hydrocarbons (PAH) those discharged as water produced (WP) from the AlAhdab oil field (AOF) in the ponds close to it may leak to the water resources around and eventually reaches the marshes which will affect its ecosystem. Thus, this work aims to track the availability of PAH in the water resources and the Main Outfall Drain (MOD) nearby. The determination of PAH was evaluated using “High-Performance Liquid Chromatography (HPLC)”. The mean concentration of sixteen PAH in the produced water within the field was relatively high (0.01 to 10.89 g/ml) with standard deviations of (0.10.9). While, PAH outside the field were gradually diminishes down to (0.01-0.039) x10-2 g/ml which exceeds th

... Show More
Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Engineering Science And Technology (jestec)
Predicting Municipal Sewage Effluent Quality Index Using Mathematical Models In The Al-Rustamiya Sewage Treatment Plant

Efficient management of treated sewage effluents protects the environment and reuse of municipal, industrial, agricultural and recreational as compensation for water shortages as a second source of water. This study was conducted to investigate the overall performance and evaluate the effluent quality from Al- Rustamiya sewage treatment plant (STP), Baghdad, Iraq by determining the effluent quality index (EQI). This assessment included daily records of major influent and effluent sewage parameters that were obtained from the municipal sewage plant laboratory recorded from January 2011 to December 2018. The result showed that the treated sewage effluent quality from STP was within the Iraqi quality standards (IQS) for disposal and t

... Show More
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Material Recognition of Foreign Object Debris using Deep Learning

     Foreign Object Debris (FOD) is defined as one of the major problems in the airline maintenance industry, reducing the levels of safety. A foreign object which may result in causing serious damage to an airplane, including engine problems and personal safety risks. Therefore, it is critical to detect FOD in place to guarantee the safety of airplanes flying. FOD detection systems in the past lacked an effective method for automatic material recognition as well as high speed and accuracy in detecting materials. This paper proposes the FOD model using a variety of feature extraction approaches like Gray-level Co-occurrence Matrix (GLCM) and Linear Discriminant Analysis (LDA) to extract features and Deep Learning (DL) for classifi

... Show More
Scopus Crossref
View Publication Preview PDF