In this study, some physical and mechanical properties of soil samples collected from the campus site of College of Science, University of Diyalahave been evaluated. All laboratory tests were performed according to the standards of American Society for Testing and Materials (ASTM). The test results showed that the range of soil water content wwas (13.89%-16.34%) with an average of 15.44%. The specific gravity range was (2.58-2.77) with an average of 2.66. The range of Liquid Limit LL was (26.20-35.20%) with an average of 32.22%.The range of Plastic Limit PL was (18.63-23.24%) with average of 21.06%. The range of Plasticity Index was (7.57-12.42) with an average of 11.61. Based on USCS classifications, the soil can be considered as fine-grained soil type CL (CL is inorganic clay soil of low to medium plasticity). Liquidity Index LI values were ranged from 0.002 to 0.560 while Consistency Index CI ranged from 0.271 to 0.998 indicating a plastic state. The average optimum water OWC content and maximum dry density MDD calculated from Standard Proctor Compaction test were 10.36% and 1.79g/cm3, respectively. Shear test results revealed that the cohesion strength range was (5-10 Kg/m2) with an average of 7.8 Kg/m2, and the angle of internal friction range was (25-30o) with an average of 29.4o. The measured values of angle of internal friction are within the range of CL soil. However, the cohesion strength is relatively low as cohesion of clay soil is affected by different factors such water content and clay content. The compression index derived from consolidation test was ranged from 0.03 to 0.25, and the calculated values of void ratio (0.94-1.04) and porosity (0.48-0.51) are within the range of clay soils. Physical and mechanical properties presented in the current study are useful for future engineering works scheduled at the campus site of College of Science,University of Diyala.
In this study the Fourier Transform Infrared Spectrophotometry (FTIR) provides a quick, efficient and relatively inexpensive method for identifying and quantifying gypsum concentrations in the samples taken from different sites from different localities from Alexandria district southwest Baghdad. A comprehensive spectroscopic study of gypsum-calcite system was reported to give good results for the first time by using IR for analytical grades of gypsum (CaSO4.2H2O) and calcite (CaCO3) pure crystals. The spectral results were used to create a calibration curve relates the two minerals concentrations to the intensity (peaks) of FTIR absorbance and applies this calibration to specify gypsum and calcite concentrations in Iraqi gypsiferous soi
... Show MoreThe current study included the isolation, purification and cultivation of blue-green alga Oscillatoria pseudogeminata G.Schmidle from soil using the BG-11liquid culture medium for 60 days of cultivation. The growth constant (k) and generation time (G) were measured which (K=0.144) and (G=2.09 days).
Microcystins were purified and determined qualitatively and quantitatively from this alga by using the technique of enzyme linked immunosorbent assay (Elisa Kits). The alga showed the ability to produce microcystins in concentration reached 1.47 µg/L for each 50 mg DW. Tomato plants (Lycopersicon esculentum) aged two months were irrigated with three concentrations of purified microcystins 0.5 , 3.0 and 6.0
... Show MoreIn this study the Fourier Transform Infrared Spectrophotometry (FTIR) provides a quick, efficient and relatively inexpensive method for identifying and quantifying gypsum concentrations in the samples taken from different sites from different localities from Alexandria district southwest Baghdad. A comprehensive spectroscopic study of gypsum-calcite system was reported to give good results for the first time by using IR for analytical grades of gypsum (CaSO4.2H2O) and calcite (CaCO3) pure crystals. The spectral results were used to create a calibration curve relates the two minerals concentrations to the intensity (peaks) of FTIR absorbance and applies this calibration to specify gypsum and calcite concentrations in Iraqi gypsife
... Show MoreThis study is conducted to determine the activity of plant Vica faba and two isolated from arbuscular mycorrhizae fungi (A,B) in bioremediation of soil pollution by Nickel and Lead elements in north and south of Baghdad city. The results showed that the average of soil pollution by Nickel and Lead elements in north of Baghdad was less than the average of soil pollution in the south of Baghdad which recorded 29.0,9.0PPm and 42.0, 25.0PPm respectively. The results show that the isolate A from the polluted soil is more active from isolate B which isolate from unpolluted soil for bioremediation. Vica faba recorded more in accumulate the Lead element in shoot system which was 19.65PPm and in root system was 27.2PPm and for Nickel element 24.65
... Show MoreIn this study the Fourier Transform Infrared Spectrophotometry (FTIR) provides a quick, efficient and relatively inexpensive method for identifying and quantifying gypsum concentrations in the samples taken from different sites from different localities from Alexandria district southwest Baghdad. A comprehensive spectroscopic study of gypsum-calcite system was reported to give good results for the first time by using IR for analytical grades of gypsum (CaSO4.2H2O) and calcite (CaCO3) pure crystals. The spectral results were used to create a calibration curve relates the two minerals concentrations to the intensity (peaks) of FTIR absorbance and applies this calibration to specify gypsum and calcite concentrations in Iraqi gypsiferous soi
... Show MoreBearing capacity of soil is an important factor in designing shallow foundations. It is directly related to foundation dimensions and consequently its performance. The calculations for obtaining the bearing capacity of a soil needs many varying parameters, for example soil type, depth of foundation, unit weight of soil, etc. which makes these calculation very variable–parameter dependent. This paper presents the results of comparison between the theoretical equation stated by Terzaghi and the Artificial Neural Networks (ANN) technique to estimate the ultimate bearing capacity of the strip shallow footing on sandy soils. The results show a very good agreement between the theoretical solution and the ANN technique. Results revealed that us
... Show MoreThis study is conducted to investigate the validity of using different levels of Rustumiya sewage water for irrigation and their effects on corn growth and some of the chemical properties of the soil such as electrical conductivity and soil pH in extract soil paste , the micro nutrient content in soil and plant which are ( Fe , Mn , Zn , Cu , Cd , Pb ). Three levels of sewage water ( 0 , 50 , 100 )% in two stages were used ,the three levels of wastewater ( without soil fertilization ) were used in the first stage , Where 80 Kg N /D+50Kg P2O5 /D was added to the soil as fertilizer in the control (0%) treatment and 40 Kg N/D+25Kg P2O5/D were added to 50 and 100% levels in the second stage .Corn seeds were planted in 12kg plastic pots in Com
... Show MoreBacterial strains were isolated from oil-contaminated soil, in 2018, these isolates were identified, and with the aim of finding out the ability of these isolates to degrede the oil compounds, the color change of medium which added to it isolates was read by the method of Pacto Bushnell Hans. Then the change in the petroleum compounds was read by gas chromatography, for the most effective isolates.
The nine isolated bacterial showed different degrees of color change, and the isolates (Pseudomonas, Bacillus, Micrococcus) outperformed the color change amount (78, 78, 77) %, respectively, compared to the control, and the three isolates together showed the best color change of 90.7. % Compared to the control, and the
... Show MoreIn this paper, the Monte Carlo N-Particle extended computer code (MCNP) were used to design a model of the European Sodium-cooled Fast Reactor. The multiplication factor, conversion factor, delayed neutrons fraction, doppler constant, control rod worth, sodium void worth, masses for major heavy nuclei, radial and axial power distribution at high burnup are studied. The results show that the reactor breeds fissile isotopes with a conversion ratio of 0.994 at fuel burnup 70 (GWd/T), and minor actinides are buildup inside the reactor core. The study aims to check the efficiency of the model on the calculation of the neutronic parameters of the core at high burnup.