This paper presents an alternative method for developing effective embedded optimized Runge-Kutta (RK) algorithms to solve oscillatory problems numerically. The embedded scheme approach has algebraic orders of 5 and 4. By transforming second-order ordinary differential equations (ODEs) into their first-order counterpart, the suggested approach solves first-order ODEs. The amplification error, phase-lag, and first derivative of the phase-lag are all nil in the embedded pair. The alternative method’s absolute stability is demonstrated. The numerical tests are conducted to demonstrate the effectiveness of the developed approach in comparison to other RK approaches. The alternative approach outperforms the current RK methods.
Reinforced concrete slabs are one of the most important and complicated elements of a building. For supported edges slabs, if the ratio of long span to short span is equal or less than two then the slab is considered as two-way slab otherwise is consider as one-way slab. Two-way reinforced concrete slabs are common in use in reinforced concrete buildings due to geometrically arrangement of columns suggested by architects who prefer a symmetric distribution of columns in their plans. Elastic theory is usually used for analysis of concrete slabs. However, for several reasons design methods based on elastic principles are limited in their function. Correspondingly, limit state analysis o
The 2D resistivity imaging technique was applied in an engineering study for the investigation of subsurface weakness zones within University of Anbar, western Iraq. The survey was carried out using Dipole-dipole array with an n-factor of 6 and a-spacing values of 2 m and 5 m. The inverse models of the 2D electrical imaging clearly show the resistivity contrast between the anomalous parts of the weakness zones and the background resistivity distribution. The thickness and shape of the subsurface weakness zones were well defined from the 2D imaging using Dipole-dipole array of 2 m a-spacing. The thickness of the weakness zone ranges between 9.5 m to 11.5 m. Whereas the Dipole-dipole array with a-spacing of 5 m and n-factor of 6 allocated
... Show MoreGeography of industry has been considered a branch of important economic geographical branches. This importance has been regarded as a reflection on the industrial sector contribution in economies of any state since they contribute into the total national product ; it also assimilates a huge number of labor hands . The industry of grains grinding has been considered as one of the main food industries having a main role in satisfying the need of the population from the foods. The industry is continued to use the food as daily meal . Here, it should predict the population in Baghdad and for every district until the end of 2025 and knowing either these grains grinders are able to meet and satisfy the needs of populations of flours, making s
... Show More
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.
This study investigates the challenges encountered by first-grade intermediate students in learning the Arabic language. It aims to identify specific obstacles that hinder language acquisition and proficiency among this demographic. Through qualitative and quantitative methods, including surveys and interviews with students, teachers, and parents, the research highlights key issues such as limited vocabulary, difficulties in grammar, lack of engagement with the material, and inadequate teaching resources. The findings reveal a complex interplay between cognitive, social, and educational factors that contribute to these challenges. The study underscores the need for targeted interventions, such as enhanced pedagogical strategies and improved
... Show MoreIn this study, the modified size-strain plot (SSP) method was used to analyze the x-ray diffraction lines pattern of diffraction lines (1 0 1), (1 2 1), (2 0 2), (0 4 2), (2 4 2) for the calcium titanate(CaTiO3) nanoparticles, and to calculate lattice strain, crystallite size, stress, and energy density, using three models: uniform (USDM). With a lattice strain of (2.147201889), a stress of (0.267452615X10), and an energy density of (2.900651X10-3 KJ/m3), the crystallite was 32.29477611 nm in size, and to calculate lattice strain of Scherrer (4.1644598X10−3), and (1.509066023X10−6 KJ/m3), a stress of(6.403949183X10−4MPa) and (26.019894 nm).
The aim of this paper is to present a method for solving of system of first order initial value problems of ordinary differential equation by a semi-analytic technique with constructing polynomial solutions for decreasing dangers of lead. The original problem is concerned using two-point osculatory interpolation with the fit equals numbers of derivatives at the end points of an interval [0 , 1].
This research aims to know the essence of the correlative relationship between tactical thinking and solving mathematical problems. The researchers followed the descriptive research method to analyze relations, as all students from the mathematics department in the morning study were part of the research group. The research sample of (100) male and female students has been chosen based on the arbitrators' views. The tools for studying the sample of research composed of (12) items of the multiple-choice test in its final form to measure tactical thinking and require establish-ing a test of (6) test-type paragraphs to solve mathematical problems. The findings showed that sample students' tactical thinking and their capacity to overcome mathem
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of some kinds of fractional integral and fractional integrodifferential equations. The algorithm for the numerical solution of these equations is based on iterative approach. The stability and convergence of the fractional order numerical method are described. Finally, some numerical examples are provided to show that the numerical method for solving the fractional integral and fractional integrodifferential equations is an effective solution method.