Preferred Language
Articles
/
ijs-4731
Silver Nanoparticles as a selective probe for Mercury Ions: A Review
...Show More Authors

   Nanochemistry is a significant area which involves the synthesis, design, and manipulation of particle structures with dimensions ranging from 1 to 100 nanometres. It is now one of the major concerns of pharmaceutical and biological researchers. The current study discusses recent advances in the use of silver nanoparticles (AgNPs) as a selective sensor for qualitative and colorimetric quantitative detection of mercury ions.   The synthesis of significant noble metal AgNPs is described as a novel, low-cost, quick, and simple method for detecting mercury ions. Due to the seriousness of mercury toxicity to our cells, AgNPs may be successfully employed for the detection of ecologically harmful mercury ions in a wide variety of aqueous practical samples using a colorimetric approach. As a result, as provided in this review with extensive details regarding this analytical approach, it might be utilized to monitor mercury ions via AgNPs in a variety of practical samples.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 24 2021
Journal Name
Iraqi Journal Of Science
Morphology Detection in Archaeological Ancient Sites by Using UAVs/Drones Data and GIS techniques
...Show More Authors

    Today, Unmanned Aerial Vehicles (UAVs) or Drones are a valuable source of data on inspection, surveillance, mapping and 3D modelling matters. Drones can be considered as the new alternative of classic manned aerial photography due to their low cost and high spatial resolution. In this study, drones were used to study archaeological sites. The archaeological Nineveh site, which is a very famous site located in heart of the city of Mosul, in northern Iraq, was chosen. This site was the largest capital of the Assyrian Empire 3000 years ago. The site contains an external wall that includes many gates, most of which were destroyed when Daesh occupied the city in 2014. The local population of the city of Mosul has also large

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Sat Jul 01 2023
Journal Name
The Egyptian Journal Of Hospital Medicine
Production, Extraction, and Purification of An Extracellular Melanin Pigment from Clinically Isolated Pseudomonas aeruginosa
...Show More Authors

Introduction: Melanin is a high-molecular weight pigment produced through the oxidative polymerization of phenolic or indolic compounds and plays a perfect role in UV-light shielding, as well as in photoprotection. Among biopolymers, melanin is unique in many aspects. This study is designed to screen Production, extraction and characterizes of an extracellular melanin pigment from clinically isolated P. aeruginosa. Objective: The aim of the current study is isolation and diagnosis of P.aeruginosa using vitek-2 compact system and screening the ability to produce melanin and characterization of extracted melanin by UV-vis, FTIR, XRD and SEM. Materials and methods: the samples swab inoculated on cetrimide agar as selective media and incubated

... Show More
View Publication
Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Iraqi Journal Of Science
Best Way to Detect Breast Cancer by UsingMachine Learning Algorithms
...Show More Authors

Breast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with mis

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 16 2022
Journal Name
Iraqi Journal Of Science
Colord Image White Cracks In-Painting Method
...Show More Authors

The gaps and cracks in an image result from different reasons and affect the images. There are various methods concerning gaps replenishment along with serious efforts and proposed methodologies to eliminate cracks in diverse tendencies. In the current research work a color image white crack in-painting system has been introduced. The proposed inpainting system involved on two algorithms. They are Linear Gaps Filling (LGF) and the Circular Gaps Filling (CGF). The quality of output image depends on several effects such as: pixels tone, the number of pixels in the cracked area and neighborhood of cracked area and the resolution the image. The quality of the output images of two methods (linear method: average Peak Signal to Noise Ratio (PS

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
Eye Detection using Helmholtz Principle
...Show More Authors

            Eye Detection is used in many applications like pattern recognition, biometric, surveillance system and many other systems. In this paper, a new method is presented to detect and extract the overall shape of one eye from image depending on two principles Helmholtz & Gestalt. According to the principle of perception by Helmholz, any observed geometric shape is perceptually "meaningful" if its repetition number is very small in image with random distribution. To achieve this goal, Gestalt Principle states that humans see things either through grouping its similar elements or recognize patterns. In general, according to Gestalt Principle, humans see things through genera

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Sep 25 2018
Journal Name
Iraqi Journal Of Science
Effect of Successive Convolution Layers to Detect Gender
...Show More Authors

Image classification can be defined as one of the most important tasks in the area of machine learning. Recently, deep neural networks, especially deep convolution networks, have participated greatly in end-to-end learning which reduce need for human designed features in the image recognition like Convolution Neural Network. It is offers the computation models which are made up of several processing layers for learning data representations with several abstraction levels. In this work, a pre-trained deep CNN is utilized according to some parameters like filter size, no of convolution, pooling, fully connected and type of activation function which includes 300 images for training and predict 100 image gender using probability measures. Re

... Show More
View Publication Preview PDF
Publication Date
Fri Nov 24 2023
Journal Name
Iraqi Journal Of Science
Segmenting the Dermatological Diseases Images by Developing the Range Operator
...Show More Authors

Medical image segmentation is a frequent processing step in image medical understanding and computer aided diagnosis. In this paper, development of range operator in image segmentation is proposed depending on dermatology infection. Three different block sizes have been utilized on the range operator and the developed ones to enhance the behavior of the segmentation process of medical images. To exploit the concept of range filtering, the extraction of the texture content of medical image is proposed. Experiment is conducted on different medical images and textures to prove the efficacy of our proposed filter was good results.

View Publication Preview PDF
Publication Date
Thu Mar 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Images Segmentation Based on Fast Otsu Method Implementing on Various Edge Detection Operators
...Show More Authors

The present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.

View Publication Preview PDF
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
Automatic Vehicles Detection, Classification and Counting Techniques / Survey
...Show More Authors

Vehicle detection (VD) plays a very essential role in Intelligent Transportation Systems (ITS) that have been intensively studied within the past years. The need for intelligent facilities expanded because the total number of vehicles is increasing rapidly in urban zones. Traffic monitoring is an important element in the intelligent transportation system, which involves the detection, classification, tracking, and counting of vehicles. One of the key advantages of traffic video detection is that it provides traffic supervisors with the means to decrease congestion and improve highway planning. Vehicle detection in videos combines image processing in real-time with computerized pattern recognition in flexible stages. The real-time pro

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
Epileptic Seizures Detection Using DCT-II and KNN Classifier in Long-Term EEG Signals
...Show More Authors

     Epilepsy is one of the most common diseases of the nervous system around the world, affecting all age groups and causing seizures leading to loss of control for a period of time. This study presents a seizure detection algorithm that uses Discrete Cosine Transformation (DCT) type II to transform the signal into frequency-domain and extracts energy features from 16 sub-bands. Also, an automatic channel selection method is proposed to select the best subset among 23 channels based on the maximum variance. Data are segmented into frames of  one Second length without overlapping between successive frames. K-Nearest Neighbour (KNN) model is used to detect those frames either to ictal (seizure) or interictal (non-

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref