In the present paper, the authors introduce and investigates two new subclasses and, of the class k-fold bi-univalent functions in the open unit disk. The initial coefficients for all of the functions that belong to them were determined, as well as the coefficients for functions that belong to a field determining these coefficients requires a complicated process. The bounds for the initial coefficients and are contained among the remaining results in our analysis are obtained. In addition, some specific special improver results for the related classes are provided.
The paper is concerned with posterior analysis of five exponentiated (Weibull, Exponential, Inverted Weibull, Pareto, Gumbel) distrebutions. The expressions for Bayes estimators of the shape parameters have been derived under four different prior distributions assuming four different loss functions. The posterior predictive distributions have been obtained, and the comparison between estimators made by using the mean squared errors through generated different sample sizes by using simulation technique. In general, the performance of estimators under Chi-square prior using squared error loss function is the best.
The aim of this paper is to construct the (k,r)-caps in the projective 3-space PG(3,p) over Galois field GF(4). We found that the maximum complete (k,2)-cap which is called an ovaloid , exists in PG(3,4) when k = 13. Moreover the maximum (k,3)-caps, (k,4)-caps and (k,5)-caps.
In this paper, we introduce new definitions of the - spaces namely the - spaces Here, and are natural numbers that are not necessarily equal, such that . The space refers to the n-dimensional Euclidean space, refers to the quaternions set and refers to the N-dimensional quaternionic space. Furthermore, we establish and prove some properties of their elements. These elements are quaternion-valued N-vector functions defined on , and the spaces have never been introduced in this way before.
In this work, we construct and classify the projectively distinct (k,3)-arcs in PG(2,9), where k ≥ 5, and prove that the complete (k,3)-arcs do not exist, where 5 ≤ k ≤ 13. We found that the maximum complete (k,3)-arc in PG(2,q) is the (16,3)-arc and the minimum complete (k,3)-arc in PG(2,q) is the (14,3)-arc. Moreover, we found the complete (k,3)-arcs between them.
The 2D imaging survey was conducted across an unknown K- 3 cavity that is located in Haditha area-Western Iraq.2D measurements are collected along two intercrossing traverses above the cavity with 105m length of each one. Dipole-dipole array is performed with n-factor of 6 and a-spacing equals to 5m. The inverse models of 2D imaging technique showed clearly that the resistivity contrast between the anomalous part of cavity and background resistivity of rocks is about 800:100 Ωm .In addition, the invers models showed that the depth from ground surface to the upper roof of cavity approximately equals to 11m near the cavity operator. So, the K-3 cavity is well defined from 2D imaging with Dipole –dipole array in comparison with the actua
... Show More The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs. All of these arcs are incomplete. The number of distinct (12,3)-arcs are six, two of them are complete. There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete. There exists one complete (15,3)-arc.
This article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie
... Show MoreNew polymer blend with enhanced properties was prepared from (80 %) epoxy resin (Ep), (20%) unsaturated polyester resin (UPE) as a matrix material. The as-obtained polymer blend was further reinforced by adding Sand particles of particle size (53 μm) with various weight fraction (5, 10, 15, 20 %). Thermal conductivity and sorption measurements are performed in order to determine diffusion coefficient in different chemical solutions (NaOH, HCl) with concentration (0.3N) after immersion for specific period of time (30 days). The obtained results demonstrate that the addition of sand powder to (80%EP/20%UPE) blend leads to an increase of thermal conductivity, with an optimum/minimum diffusion coefficient in (HCl)/(NaOH), respectively.
Stick- slip is the continuous stopping& release of the Bit/BHA due to the irregular down-hole rotation prompted by the existing relationship between the friction torque and the torque applied from the surface to free the bit.
Friction coefficient between BHA and wellbore is the main player of stick slip amount, which can be mitigated by support a good lubricators as additives in drilling mud.
Mathematical (or empirical) solves should be done through adjusting all parameters which supposed to reduce stick- slip as low as possible using different models, one of the main parameters is drilling mud. As per Nanoparticles drilling fluid is a new technology that offers high performance
... Show More