Applying 4K, (Ultra HD) Real-time video streaming via the internet network, with low bitrate and low latency, is the challenge this paper addresses. Compression technology and transfer links are the important elements that influence video quality. So, to deliver video over the internet or another fixed capacity medium, it is essential to compress the video to more controllable bitrates (customarily in the 1-20 Mbps range). In this study, the video quality is examined using the H.265/HEVC compression standard, and the relationship between quality of video and bitrate flow is investigated using various constant rate factors, GOP patterns, quantization parameters, RC-lookahead, and other types of video motion sequences. The ultra-high-definition video source is used, down sampled and encoded at multiple resolutions of (3480x2160), (1920x1080), (1280x720), (704x576), (352x288), and (176x144). To determine the best H265 feature configuration for each resolution experiments were conducted that resulted in a PSNR of 36 dB at the specified bitrate. The resolution is selected by delivery (encoder resource) based on the end-user application. While video streaming adapted to the available bandwidth is achieved via embedding a controller with MPEG DASH protocol at the client-side. Video streaming Adaptation methods allow the delivery of content that is encoded at different representations of video quality and bitrate and then dividing each representation into chunks of time. Through this paper, we propose to utilize HTTP/2 as a protocol to achieve low latency video streaming focusing on live streaming video avoiding the problem of HTTP/1.
With the development of computer architecture and its technologies in recent years, applications like e-commerce, e-government, e-governance and e-finance are widely used, and they act as active research areas. In addition, in order to increase the quality and quantity of the ordinary everyday transactions, it is desired to migrate from the paper-based environment to a digital-based computerized environment. Such migration increases efficiency, saves time, eliminates paperwork, increases safety and reduces the cost in an organization. Digital signatures are playing an essential role in many electronic and automatic based systems and facilitate this migration. The digital signatures are used to provide many services and s
... Show MoreIn this paper, a discussion of the principles of stereoscopy is presented, and the phases
of 3D image production of which is based on the Waterfall model. Also, the results are based
on one of the 3D technology which is Anaglyph and it's known to be of two colors (red and
cyan).
A 3D anaglyph image and visualization technologies will appear as a threedimensional
by using a classes (red/cyan) as considered part of other technologies used and
implemented for production of 3D videos (movies). And by using model to produce a
software to process anaglyph video, comes very important; for that, our proposed work is
implemented an anaglyph in Waterfall model to produced a 3D image which extracted from a
video.
In this paper, a national grid-connected photovoltaic (PV) system is proposed. It extracts the maximum power point (MPP) using three-incremental-steps perturb and observe (TISP&O) maximum power point tracking (MPPT) method. It improves the classic P&O by using three incremental duty ratio (ΔD) instead of a single one in the conventional P and O MPPT method. Therefore, the system's performance is improved to a higher speed and less power fluctuation around the MPP. The Boost converter controls the MPPT and then is connected to a three-phase voltage source inverter (VSI). This type of inverter needs a high and constant input voltage. A second-order low pass (LC) filter is connected to the output of VSI to reduce t
... Show MoreIn this paper, a modified derivation has been introduced to analyze the construction of C-space. The profit from using C-space is to make the process of path planning more safety and easer. After getting the C-space construction and map for two-link planar robot arm, which include all the possible situations of collision between robot parts and obstacle(s), the A* algorithm, which is usually used to find a heuristic path on Cartesian W-space, has been used to find a heuristic path on C-space map. Several modifications are needed to apply the methodology for a manipulator with degrees of freedom more than two. The results of C-space map, which are derived by the modified analysis, prove the accuracy of the overall C-space mapping and cons
... Show MoreDigital Elevation Model (DEM) is one of the developed techniques for relief representation. The definition of a DEM construction is the modeling technique of earth surface from existing data. DEM plays a role as one of the fundamental information requirement that has been generally utilized in GIS data structures. The main aim of this research is to present a methodology for assessing DEMs generation methods. The DEMs data will be extracted from open source data e.g. Google Earth. The tested data will be compared with data produced from formal institutions such as General Directorate of Surveying. The study area has been chosen in south of Iraq (Al-Gharraf / Dhi Qar governorate. The methods of DEMs creation are kriging, IDW (inver
... Show MoreAbstract In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF-energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra-wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore-sight gain variation from 2.2 to
... Show MoreA simple all optical fiber sensor based on multimode interference (MMI) for chemical liquids sensing was designed and fabricated. A segment of coreless fiber (CF) was spliced between two single mode fibers to buildup single mode-coreless-single mode (SCS) structure. Broadband source and optical signal analyzer were connected to the ends of SCS structure. De-ionized water, acetone, and n-hexane were used to test the performance of the sensor. Two influence factors on the sensitivity namely the length and the diameter of the CF were investigated. The obtained maximum sensitivity was at n-hexane at 340.89 nm/RIU (at a wavelength resolution of the optical spectrum analyzer of 0.02 nm) when the diameter of the CF reduced from 125 μm to 60 μ
... Show More