Preferred Language
Articles
/
ijs-4524
Studying the Optical and Structural Properties of Cadmium Oxide Thin Films Prepared by Successive Ionic Layer Adsorption and Reaction (SILAR) Technique
...Show More Authors

     Cadmium oxide CdO thin films were prepared by successive ionic layer adsorption and reaction (SILAR) technique at varying number of dippings. The CdO thin films were prepared from a source material of Cadmium acetate and ammonium hydroxide solution deposited on glass substrate at 95℃.    The prepared thin films were investigated by X-ray diffraction (XRD), Atomic force microscopy (AFM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and UV-Visible spectrometry. The XRD analysis reveals that the films were polycrystalline with cubic structure having preferential orientation along (1 1 1), (2 0 0), (2 2 0), and (3 1 1) planes. While the tests of the scanning electron microscopy and the atomic force microscopy indicate that the thin films are homogeneous and free of voids.

Key words :thin films,  SILAR ,X-ray diffraction,. 0ptical and structural properties

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Development of the Properties of Zinc Polycarboxylate Cement Used as a Basis for Dental Fillings Using Zink Oxide Nanoparticles Prepared by Green Chemistry Method
...Show More Authors

Most dental supplies don't seem to be much of a barrier against germ infiltration. Therefore, the filling must be done with perfect caution and high antimicrobial effectiveness. When dental erosion occurs due to germs that lead to caries, a dental filling is used, creating a small microscopic space between the dental filling and the root end infiltration. This allowed the tooth to be penetrated for the second time, which was the research problem. Adding two compounds to antibacterial fillers (zinc polycarboxylate cement) made them work better: Firstly, was zinc oxide  (ZnO) that was made chemically, and secondly, was green ZnO nanoparticles that were made from orange peels and mixed with ZPCC in different amounts. The study was conducte

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
Raman Scattering Enhancement by silver Nanostructures Prepared by Electrical Exploding Wire Technique
...Show More Authors

This project aims to fabricate nanostructures (AgNPS) using the  electrical exploding wire (EEW) technique using Rhodamine 6G dye as the probe molecule, investigate the effect of AgNPS on the absorption spectra and surface-enhanced Raman scattering (SERS) activities, and advance  using porous silicon as an active substrate for surface-enhanced Raman scattering (SERS). X-Ray diffraction (XRD) was used to investigate the structural properties of the nanostructures (AgNPs). Field emission scanning electron microscopy (FE-SEM) was used to investigate surface morphology. A double beam UV-Vis Spectrophotometer was used to analyze the mixed R6G laser dye(of concentration 1x  M)  absorption spectra with the nanostructures AgNPS (of concentra

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Physical properties of CdS/CdTe/CIGS thin films for solar cell application
...Show More Authors

View Publication
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed May 01 2024
Journal Name
Journal Of Physics: Conference Series
Studying the effect of changing optical fibers parameters on their modes properties at 1000 nm wavelength
...Show More Authors
Abstract<p>Optical fiber technology is without a doubt one of the most significant phases of the communications revolution and is crucial to our daily lives. Using the free version (2022) of RP Fiber Calculator, the modal properties for optical fibers with core radii (1.5−7.5) μm, core index (1.44−1.48) and cladding index (1.43−1.47) have been determined at a wavelength of 1000 nm. When the fiber core’s radius is larger than its operating wavelength, multimode fibers can be created. The result is a single-mode fiber in all other cases. All of the calculated properties, it has been shown, increase with increasing core radius. The modes’ intensity profiles were displayed.</p>
View Publication
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Effect of the Pulsed Laser Energy on the Properties of CdO: NiO Composite Thin Films for Solar Cell Applications
...Show More Authors

     In this work, thin films of cadmium oxide: nickel oxide (CdO: NiO) were prepared by pulsed laser deposition at different pulse energies of Nd: YAG laser. The thin films' properties were determined by various techniques to study the effect of pulse laser energy on thin films' properties. X-ray diffraction measurements showed a mixture of both phases. The degree of crystallinity and the lattice constant increase with the laser energy increase, while the lattice strain decreases. FE-SEM images show that the substrates' entire surface is uniformly covered, without any cracks, with a well-connected structure consisting of small spherical particles ranging in size from 15 to 120 nm. Increasing the laser power causes to increase the pa

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Ovonic Research
Effect of copper on physical properties of CdO thin films and n-CdO: Cu / p-Si heterojunction
...Show More Authors

Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Ovonic Research
Effect of copper on physical properties of CdO thin films and n-CdO: Cu / p-Si heterojunction
...Show More Authors

Scopus (14)
Scopus
Publication Date
Wed Oct 20 2021
Journal Name
Iraqi Journal Of Industrial Research
Annealing Effect on the SnSe Nanocrystalline Thin Films and the Photovoltaic Properties of the p-SnSe/n-Si Heterojunction Solar Cells
...Show More Authors

A thin film of SnSe were deposited by thermal evaporation technique on 400 ±20 nm thick glass substrates of these films were annealed at different temperatures (100,150,200 ⁰C), The effect of annealing on the characteristics of the nano crystalline SnSe thin films was investigated using XRD, UV-VIS absorption spectroscopy, Atomic Force Microscope (AFM), and Hall effect measurements. The results of X-ray displayed that all the thin films have polycrystalline and orthorhombic structure in nature, while UV-VIS study showed that the SnSe has direct band gap of nano crystalline and it is changed from 60.12 to 94.70 nm with increasing annealing temperature. Hall effect measurements showed that all the films have a positive Hall coeffic

... Show More
View Publication
Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Morphology and Electrical Properties Study of Nanocrystalline Silicon Surface Prepared By Electrochemical Etching
...Show More Authors

In this work, nanostructure porous silicon surface was prepared using electrochemical etching method under different current densities. I have studied the surface morphology and photoluminescence (PL) of three samples prepared at current densities 20, 30 and 40 mA/cm2 at fixed etching time 10 min. The atomic force microscopy (AFM) images of porous silicon showed that the nanocrystalline silicon pillars and voids over the entire surface has irregular and randomly distributed. Photoluminescence study showed that the emission peaks centered at approximately (600 – 612nm) corresponding energies (2.06 – 2.02eV).
While current-voltage characteristics shows, as the current density increase the current flow in the forward bias is decreasi

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 15 2015
Journal Name
Iraqi Journal Of Laser
The Optical Limiting of Prepared Palladium Nanoparticles
...Show More Authors

Palladium nanoparticles are produced by Polyol method. The characterization of the Pd nanoparticle has been conducted by various techniques such as SEM and AFM. The results of Pd powder showed that the particle size is directly proportional to the temperature and the reaction time. The optimum conditions for obtaining minimum nanoparticles size are 45 oC reaction temperature and 60 min reaction time and the smaller particle size achieved is equal to 25 nm. The optical limiting of smaller size nanoparticles has been studied. The palladium nanoparticles appear to be attractive candidates for optical limiting applications.

View Publication Preview PDF