The seismic method depends on the nature of the reflected waves from the interfaces between layers, which in turn depends on the density and velocity of the layer, and this is called acoustic impedance. The seismic sections of the East Abu-Amoud field that is located in Missan Province, south-eastern Iraq, were studied and interpreted for updating the structural picture of the major Mishrif Formation for the reservoir in the field. The Mishrif Formation is rich in petroleum in this area, with an area covering about 820 km2. The horizon was calibrated and defined on the seismic section with well logs data (well tops, check shot, sonic logs, and density logs) in the interpretation process to identify the upper and lower boundaries of the Formation. Seismic attributes were used to study the formation, including instantaneous phase attributes and relative acoustic impedance on time slice of 3D seismic data . Also, relative acoustic impedance was utilized to study the top of the Mishrif Formation. Based on these seismic attributes, karst features of the formation were identified. In addition, the nature of the lithology in the study area and the change in porosity were determined through the relative acoustic impedance The overlap of the top of the Mishrif Formation with the bottom of the Khasib Formation was determined because the Mishrif Formation is considered as an unconformity surface.
Noor oil field is one of smallest fields in Missan province. Twelve well penetrates the Mishrif Formation in Noor field and eight of them were selected for this study. Mishrif formation is one of the most important reservoirs in Noor field and it consists of one anticline dome and bounded by the Khasib formation at the top and the Rumaila formation at the bottom. The reservoir was divided into eight units separated by isolated units according to partition taken by a rounding fields.
In this paper histograms frequency distribution of the porosity, permeability, and water saturation were plotted for MA unit of Mishrif formation in Noor field, and then transformed to the normal distribution by applying the Box-Cox transformation alg
... Show MoreBuilding a geological model is an essential and primary step for studying the reservoir’s hydrocarbon content and future performance. A three-dimensional geological model of the Asmari reservoir in Abu- Ghirab oil field including structure, stratigraphy, and reservoir petrophysical properties, has been constructed in the present work. As to underlying Formations, striking slip faults developed at the flank and interlayer normal. Abu Ghirab oilfields are located on the eastern anticlinal band, which has steadily plunged southward. 3D seismic interpretation results are utilized to build the fault model for 43 faults of the Asmari Formation in Abu Ghirab Oilfield. A geographic facies model with six different rock facies types
... Show MoreThe Zubair reservoir in the Abu-Amood field is considered a shaly sand reservoir in the south of Iraq. The geological model is created for identifying the facies, distributing the petrophysical properties and estimating the volume of hydrocarbon in place. When the data processing by Interactive Petrophysics (IP) software is completed and estimated the permeability reservoir by using the hydraulic unit method then, three main steps are applied to build the geological model, begins with creating a structural, facies and property models. five zones the reservoirs were divided (three reservoir units and two cap rocks) depending on the variation of petrophysical properties (porosity and permeability) that results from IP software interpr
... Show MoreBuilding a geological model is an essential and primary step for studying the reservoir’s hydrocarbon content and future performance. A three-dimensional geological model of the Asmari reservoir in Abu- Ghirab oil field including structure, stratigraphy, and reservoir petrophysical properties, has been constructed in the present work.
As to underlying Formations, striking slip faults developed at the flank and interlayer normal. Abu Ghirab oilfields are located on the eastern anticlinal band, which has steadily plunged southward. 3D seismic interpretation results are utilized to build the fault model for 43 faults of the Asmari Formation in Abu Ghirab Oilfield. A geographic facies model with six different rock facies type
... Show MorePetrel is regards one of the most important software to delineate subsurface Petrophysical properties to the reservoir. In this study, 3D Integrated geological models has been built by using Petrel software. The process includes integrated Petrophysical properties and environmental approaches.
Noor oil field within Mishrif Formation in terms of structural geology represents asymmetrical anticlinal fold with direction NW-SE. Porosity and water saturation model have been built. The reservoir was divided into several reservoirs and Nonreservoir units depends on the Petrophysical properties for each zone. In addition,
intact model for the reservoir in terms of porosity and water saturation have been b
This paper includes studying the microfacies evalution of Mauddud Formaion in
four wells(Rt-2, Rt-5, Rt17 and Rt-19). Seventy-seven(77) sampels were collected
of above mentioned wells. Based on fossil content of the samples under study, four
main microfacies were identified: packstone , wakestone , grainstone and lime
mudstone microfacies ,which deposited in shallow open marine and restricted
marine environments. Petrographic examination of thin section indicated that
diagenesis vary in intensity from one site to another, such as dissolution,
cementation, compaction, dolomitization and micritization, which led to the
improvement and deterioration of porosity. The dominant pore types are vuggy,
interparticle and
The reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of rest
... Show MoreFour subsurface sections and electrical, porosity logs, and gamma-ray logs of the Khasib Formation (age Late Turonian-Lower Coniacian) were studied to identify reservoir characteristics and to evaluate the reservoir properties of the Khasib reservoir units in the East Baghdad oilfield. The lithology of the formation is limestone throughout the whole sequence in all studied wells EB-83, EB-87, EB-92, and EB94. It is bounded conformably from the top by Tanuma Formation and has a conformable lower contact with Kifl Formation. The lower and upper boundaries of the formation were determined using well log analysis, and the formation was divided into three main rock units (Kh1, Kh2, and Kh3), depending on the porosity logs. The porosi
... Show MoreThis research deals with the study of the types and distribution of petrographic microfacies and Paleoenvironments of Mishrif Formation in Halfaya oil field, to define specific sedimentary environments. These environments were identified by microscopic examination of 35 thin sections of cutting samples for well HF-9H as well as 150 thin sections of core and cutting samples for well HF-I. Depending on log interpretation of wells HF-1, HF-316, HF-109, IIF-115, and IIF-272, the sedimentary facies were traced vertically through the use of various logs by Petrel 2013 software in addition to previous studies. Microfacies analysis showed the occurrence of six main Paleoenvironments within Mishrif succession, represented
... Show MoreThis research is focused on an interpretive of 2D seismic data to study is reinterpreting seismic data by applying sufficient software (Petrel 2017) of the area between Al-Razzazah Lake and the Euphrates river belonging to Karbala'a and Al-Anbar Governorates, central Iraq. The delineation of the sub-surface structural features and evaluation of the structure of Najmah and Zubair Formations was done. The structure interpretation showed that the studied area was affected by normal fault bearing (NW-SE) direction with a small displacement. In contrast, time and depth maps showed monocline structures (nose structures) located in the western part of the studied area.