Face detection is one of the important applications of biometric technology and image processing. Convolutional neural networks (CNN) have been successfully used with great results in the areas of image processing as well as pattern recognition. In the recent years, deep learning techniques specifically CNN techniques have achieved marvellous accuracy rates on face detection field. Therefore, this study provides a comprehensive analysis of face detection research and applications that use various CNN methods and algorithms. This paper presents ten of the most recent studies and illustrate the achieved performance of each method.
The purpose of this study is to underline the progression and development of research regarding oxygen-containing heterocycles as well as the contribution that some oxygen-containing heterocycles have made as anticancer medicines. A series of publications about the antitumor effects of derivatives of heterocyclic compounds containing an oxygen atom, such as furan, benzofuran, oxazole, benzoxazole, and oxadiazole, were evaluated, and their anticancer activities showed encouraging results when compared to those of established standard treatments.
Fetal growth restriction is a significant contributor to fetal morbidity and mortality. In addition, there are heightened maternal risks associated with surgical operations and their accompanying dangers. Monitoring fetal development is a crucial objective of prenatal care and effective methods for early diagnosis of Fetal growth restriction, allowing prompt management and timely intervention to improve the outcomes. Screening for Fetal growth restriction can be achieved via many modalities; it can be medical, biochemical, or radiological. Some recommended combining more than one for better outcomes. Currently, there is inconsistency about the best method of Fetal growth restriction screening. In this review, a comprehensive
... Show MoreThe aim of this paper is to identify Nano-particles that have been used in diagnosis and treatment of leishmaniasis in Iraq. All experiments conducted in this field were based on the following nanoparticles: gold nanoparticles, silver nanoparticles, zinc nanoparticles, and sodium chloride nanoparticles. Most of these experiments were reviewed in terms of differences in the concentrations of nanoparticles and the method that was used in the experiments whether it was in vivo or in vitro. These particles used in most experiments succeeded in inhibiting the growth of Leishmania parasites.
Roller Compacted Concrete is a type of concrete that is environmentally friendly and more economical than traditional concrete. Roller Compacted Concrete is typically used for heavy-duty and specialist constructions, such as hydraulic structures and pavements, because of its coarse surface. The main difference between RCC and conventional concrete mixtures is that RCC has a more significant proportion of fine aggregates that allow compaction and tight packing. In recent years, it has been estimated that several million tons of waste demolished material (WDM) produced each year are directed to landfills worldwide without being recycled for disposal. This review aimed to study the literature about creating a Roller-Comp
... Show MoreThe aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN
A study on liquid- liquid extraction of Iron (III) in Benzene has been made. The effect of different parameters such as type of medium and time of equilibration, concentration of metal ion, type of organic solvent, and effect of cations on distribution ratio of Iron (III). Has been studies the stoichiometry of the extracted species determined using slope analysis method and found to be (M:L) (1 :3).
Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreTested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
Dropping packets with a linear function between two configured queue thresholds in Random Early Detection (RED) model is incapable of yielding satisfactory network performance. In this article, a new enhanced and effective active queue management algorithm, termed Double Function RED (DFRED in short) is developed to further curtail network delay. Specifically, DFRED algorithm amends the packet dropping probability approach of RED by dividing it into two sub-segments. The first and second partitions utilizes and implements a quadratic and linear increase respectively in the packet dropping probability computation to distinguish between two traffic loads: low and high. The ns-3 simulation performance evaluations clearly indicate t
... Show More