Remote sensing techniques used in many studies for classfying and measuring of wildfires. Satellite Landsat8(OLI) imagery is used in the presented work. The satellite is considered as a near-polar orbit, with a high multispectral resolution for covering Wollemi National Park in Australia. The work aims to study and measure wildfire natural resources prior to and throughout fire breakout which occurred in Wollemi National Park in Australia for a year (October, 2019), as well as analyzing the harm resulting from such wildfires and their effects on earth and environment through recognizing satellite images for studied region prior to and throughout wildfires. A discussion of methods for computing the affecred area is covered regarding each one of the classes and lessening or limiting the quickly-spreading wildfires damage. This paper propose a 2-phases techniques: training and classifying. In the training phase, the number of clustering is computed by using C# Programming Language and feature extracted and clustered as a group and stored in the dataset. The classification used the moments with (K-Means) classification approach in RS (Remote Sensing) for classified image. The results of classification showed 5 distinctive classes (trees, rivers, bare earth, buildings with no trees, and buildings with trees) in which it might be indicates that the region is secured via each one of the classes prior to and throughout wildfires as well as the changed pixels with regard to all the classes. Also, the classification experimental methods results indicate an excellent performance recision with a good classifying and result analysis about the harms caused by fires in the study area.
The emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), c
... Show MoreIn this study, the specimens of land snails Polygyra cereolus (Megerle v on Mühlfeld t , 181 8
(Gastropoda, Stylommatophora, are collected between March and April 2021
from gardens and nurseries in Baghdad province, this species was recorded as a new record to
Iraq molluscan fauna. Description of the most important characteristics, measurements of the
shell are presented with digital p photographs, subsequently, this study represents the first record
of the Polygyridae in Iraq.
Zinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentrati
... Show MoreA biconical antenna has been developed for ultra-wideband sensing. A wide impedance bandwidth of around 115% at bandwidth 3.73-14 GHz is achieved which shows that the proposed antenna exhibits a fairly sensitive sensor for microwave medical imaging applications. The sensor and instrumentation is used together with an improved version of delay and sum image reconstruction algorithm on both fatty and glandular breast phantoms. The relatively new imaging set-up provides robust reconstruction of complex permittivity profiles especially in glandular phantoms, producing results that are well matched to the geometries and composition of the tissues. Respectively, the signal-to-clutter and the signal-to-mean ratios of the improved method are consis
... Show MoreThis paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreThe purpose of this study is to demonstrate a simple high sensitivity vapor sensor for propanol ((CH3)2CHOH). A free space gap was employed in two arms of a Mach-Zehnder interferometer to serve as the sensing mechanism by adding propanol volume (0.2, 0.4, 0.6, 0.8, and 1) ml and to set the phase reference with a physical spacing of (0.5, 1, 1.5, and 2) mm. The propagation constant of transmitted light in the Mach-Zehnder interferometer’s gap changes due to the small variation in the refractive index inside sensing arm that will further shift the optical phase of the signal. Experimental results indicated that the highest sensitivity of propanol was about 0.0275 nm/ml in different liquid volume while highest phase shift was 0.182×103 i
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More