Remote sensing techniques used in many studies for classfying and measuring of wildfires. Satellite Landsat8(OLI) imagery is used in the presented work. The satellite is considered as a near-polar orbit, with a high multispectral resolution for covering Wollemi National Park in Australia. The work aims to study and measure wildfire natural resources prior to and throughout fire breakout which occurred in Wollemi National Park in Australia for a year (October, 2019), as well as analyzing the harm resulting from such wildfires and their effects on earth and environment through recognizing satellite images for studied region prior to and throughout wildfires. A discussion of methods for computing the affecred area is covered regarding each one of the classes and lessening or limiting the quickly-spreading wildfires damage. This paper propose a 2-phases techniques: training and classifying. In the training phase, the number of clustering is computed by using C# Programming Language and feature extracted and clustered as a group and stored in the dataset. The classification used the moments with (K-Means) classification approach in RS (Remote Sensing) for classified image. The results of classification showed 5 distinctive classes (trees, rivers, bare earth, buildings with no trees, and buildings with trees) in which it might be indicates that the region is secured via each one of the classes prior to and throughout wildfires as well as the changed pixels with regard to all the classes. Also, the classification experimental methods results indicate an excellent performance recision with a good classifying and result analysis about the harms caused by fires in the study area.
The sensors based on Nickel oxide doped chromic oxide (NiO: Cr2O3) nanoparticals were fabricated using thick-film screen printing of sol-gel grown powders. The structural, morphological investigations were carried out using XRD, AFM, and FESEM. Furthermore, the gas responsivity were evaluated towards the NH3 and NO2 gas. The NiO0.10: Cr2O3 nanoparticles exhibited excellent response of 95 % at 100oC and better selectivity towards NH3 with low response and recovery time as compared to pure Cr2O3 and can stand as reliable sensor element for NH3 sensor related applications.
The most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreA new features extraction approach is presented based on mathematical form the modify soil ratio (MSR) and skewness for numerous environmental studies. This approach is involved the investigate on the separation of features using frequency band combination by ratio to estimate the quantity of these features, and it is exhibited a particular aspect to determine the shape of features according to the position of brightness values in a digital scenes, especially when the utilizing the skewness. In this research, the marginal probability density function G(MSR) derivation for the MSR index is corrected, that mentioned in several sources including the source (Aim et al.). This index can be used on original input features space for three diffe
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreLinear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreEarthquakes occur on faults and create new faults. They also occur on normal, reverse and strike-slip faults. The aim of this work is to suggest a new unified classification of Shallow depth earthquakes based on the faulting styles, and to characterize each class. The characterization criteria include the maximum magnitude, focal depth, b-constant value, return period and relations between magnitude, focal depth and dip of fault plane. Global Centroid Moment Tensor (GCMT) catalog is the source of the used data. This catalog covers the period from Jan.1976 to Dec. 2017. We selected only the shallow (depth less than 70kms) pure, normal, strike-slip and reverse earthquakes (magnitude ≥ 5) and excluded the oblique earthquakes. Th
... Show MoreMedical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.
... Show MoreThis research aims to learn about public relations programs and their role to enhance the morale of the State land Transport Company employees.The researcher relied on the survey method and use a questionnaire and scale tools to collect information from workers in the Department of Relations and Media and employees in all departments.
The research reached several conclusions, including:
1- Public relations seek to increase workers’ confidence in senior management and motivate them to improve their production, as well as their relentless endeavor to bring workers closer by following multiple and varied forms of communication with them.
2- The results of the study showed that there was a negative i