In this paper, we introduce the concept of a quasi-radical semi prime submodule. Throughout this work, we assume that is a commutative ring with identity and is a left unitary R- module. A proper submodule of is called a quasi-radical semi prime submodule (for short Q-rad-semiprime), if for , ,and then . Where is the intersection of all prime submodules of .
Let be a commutative ring with identity, and be a unitary left -module. In this paper we introduce the concept pseudo weakly closed submodule as a generalization of -closed submodules, where a submodule of an -module is called a pseudo weakly closed submodule, if for all , there exists a -closed submodule of with is a submodule of such that . Several basic properties, examples and results of pseudo weakly closed submodules are given. Furthermore the behavior of pseudo weakly closed submodules in class of multiplication modules are studied. On the other hand modules with chain conditions on pseudo weakly closed submodules are established. Also, the relationships of pseudo weakly closed
... Show MoreIn this research note approximately prime submodules is defined as a new generalization of prime submodules of unitary modules over a commutative ring with identity. A proper submodule of an -module is called an approximaitly prime submodule of (for short app-prime submodule), if when ever , where , , implies that either or . So, an ideal of a ring is called app-prime ideal of if is an app-prime submodule of -module . Several basic properties, characterizations and examples of approximaitly prime submodules were given. Furthermore, the definition of approximaitly prime radical of submodules of modules were introduced, and some of it is properties were established.
Let be a commutative ring with identity, and a fixed ideal of and be an unitary -module. In this paper we introduce and study the concept of -nearly prime submodules as genrealizations of nearly prime and we investigate some properties of this class of submodules. Also, some characterizations of -nearly prime submodules will be given.
Let R be a commutative ring with identity and let Mbe a unitary R-module. We shall say that a proper submodule N of M is nearly S-primary (for short NS-primary), if whenever , , with implies that either or there exists a positive integer n, such that , where is the Jacobson radical of M. In this paper we give some new results of NS-primary submodule. Moreover some characterizations of these classes of submodules are obtained.
Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.
In contemporary discourses the debate of most Western thinkers is about the efforts to clarify the normative foundations of democracy. And then, some political thinkers have adopted other models differ in terms of standards for traditional liberal democracy. Be the common goal of democracy will give the formation of a greater role than usual in political liberalism rather than limiting the participatory activity of citizens on the function to give permanent legitimacy to the exercise of state authority. The activity is to be permanently enshrined in the democratic public sphere and the issue must be understood as the source of all political decisions.
Let R be a commutative ring with unity and let M be a unitary R-module. Let N be a proper submodule of M, N is called a coprime submodule if ï ïŽ is a coprime R-module, where ï ïŽ is a coprime R-module if for any r  R, either O  ï ïŽ ï ïŽ r or  ï ïŽ ï ïŽr . In this paper we study coprime submodules and give many properties related with this concept.
Let M be an R-module, where R be a commutative;ring with identity. In this paper, we defined a new kind of submodules, namely; ET-coessential and ET-Coclosed submodules of M. Let T be a submodule of M. Let K H M, K is called ET-Coessential of H in M (K⊆ET.ce H), if . A submodule H is called ET- coclosed in M of H has no proper coessential submodule in M, we denote by (K⊆ET.cc H) , that is, K⊆ET.ce H implies that K = H. In our work, we introduce;some properties of ET-coessential and ET-coclosed submodules of M.
The goal of this research is to introduce the concepts of Large-coessential submodule and Large-coclosed submodule, for which some properties are also considered. Let M be an R-module and K, N are submodules of M such that , then K is said to be Large-coessential submodule, if . A submodule N of M is called Large-coclosed submodule, if K is Large-coessential submodule of N in M, for some submodule K of N, implies that .
Sequences spaces , m , p have called quasi-Sobolev spaces were introduced by Jawad . K. Al-Delfi in 2013 [1]. In this paper , we deal with notion of quasi-inner product space by using concept of quasi-normed space which is generalized to normed space and given a relationship between pre-Hilbert space and a quasi-inner product space with important results and examples. Completeness properties in quasi-inner product space gives us concept of quasi-Hilbert space . We show that , not all quasi-Sobolev spa
... Show More