Speech encryption approaches are used to prevent eavesdropping, tracking, and other security concerns in speech communication. In this paper, a new cryptography algorithm is proposed to encrypt digital speech files. Initially, the digital speech files are rearranged as a cubic model with six sides to scatter speech data. Furthermore, each side is encrypted by random keys that are created by using two chaotic maps (Hénon and Gingerbread chaotic maps). Encryption for each side of the cube is achieved, using the based map vector that is generated randomly by using a simple random function. Map vector that consists of six bits, each bit refers to one of the specific chaotic maps that generate a random key to encrypt each face of the cube. Results show that the pseudo-random keys created by using chaotic maps for cryptographic speech file have an acceptable characteristic concerning randomness tests, which is confirmed in this paper by using five statistical tests. The final evaluation of the speech encryption algorithm is measured by using different quality metrics, and the results show that the algorithm can achieve resist encryption.
The article critically analyzes traditional translation models. The most influential models of translation in the second half of the 20th century have been mentioned, among which the theory of formal and dynamic equivalence, the theory of regular correspondences, informative, situational-denotative, functional-pragmatic theory of communication levels have been considered. The selected models have been analyzed from the point of view of the universality of their use for different types and types of translation, as well as the ability to comprehend the deep links established between the original and the translation.
Аннотация