In this work, we are concerned with how to find an explicit approximate solution (AS) for the telegraph equation of space-fractional order (TESFO) using Sumudu transform method (STM). In this method, the space-fractional order derivatives are defined in the Caputo idea. The Sumudu method (SM) is established to be reliable and accurate. Three examples are discussed to check the applicability and the simplicity of this method. Finally, the Numerical results are tabulated and displayed graphically whenever possible to make comparisons between the AS and exact solution (ES).
We study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,
... Show MoreThe Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreThe aim of this paper is to present method for solving ordinary differential equations of eighth order with two point boundary conditions. We propose two-point osculatory interpolation to construct polynomial solution.
Abstract
The use of modern scientific methods and techniques, is considered important topics to solve many of the problems which face some sector, including industrial, service and health. The researcher always intends to use modern methods characterized by accuracy, clarity and speed to reach the optimal solution and be easy at the same time in terms of understanding and application.
the research presented this comparison between the two methods of solution for linear fractional programming models which are linear transformation for Charnas & Cooper , and denominator function restriction method through applied on the oil heaters and gas cookers plant , where the show after reac
... Show MoreIn this paper, we present an approximate method for solving integro-differential equations of multi-fractional order by using the variational iteration method.
First, we derive the variational iteration formula related to the considered problem, then prove its convergence to the exact solution. Also we give some illustrative examples of linear and nonlinear equations.
An evaluation was achieved by designing a matlab program to solve Kepler’s equation of an elliptical orbit for methods (Newton-Raphson, Danby, Halley and Mikkola). This involves calculating the Eccentric anomaly (E) from mean anomaly (M=0°-360°) for each step and for different values of eccentricities (e=0.1, 0.3, 0.5, 0.7 and 0.9). The results of E were demonstrated that Newton’s- Raphson Danby’s, Halley’s can be used for e between (0-1). Mikkola’s method can be used for e between (0-0.6).The term that added to Danby’s method to obtain the solution of Kepler’s equation is not influence too much on the value of E. The most appropriate initial Gauss value was also determined to
... Show More