Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential feature selection approach plays significant role in improving the performance of the proposed model. The proposed feature selection approach is evaluated using real world clinical heart disease dataset collected from University of California Irvine (UCI) data repository. Empirical test on validation set reveals that the proposed model performs well as compared to the existing methods. Overall, the state of-the-art heart disease detection model with classification accuracy of 98.53% is proposed for heart disease detection using SFS and random forest model.
The detection and estimation of weathering conditions have become a very important daily necessity in our life. For this purpose, several satellites of low resolution imagery were launched by the weathering and environmental agencies. The important weather paremeters are temperuter, wind direction, velocity, clould and humidity, etc. The low resolution images often deal with large-scale phenomena and the interpretation and projection of the produced data requires continuous development of tools and criteria. In this paper, the low spatial resolution data generated by the moderate resolution imaging spectroradiometer (MODIS) were used to monitor the cloud density and direction above Iraq and i
... Show MoreRapid and accurate identification of Methicillin Resistant Staphylococcus aureus is essential in limiting the spread of this bacterium. The aim of study is the detection of Methicillin Resistant Staphylococcus aureus (MRSA) and determining their susceptibility to some antimicrobial agent. A total of fifty clinical Staphylococcus aureus, isolated from the nose of health work staff in surgery unit of Kalar general hospital and from ear of patients attended to the same hospital. The susceptibilities of isolates were determined by the disc diffusion method with oxacillin (1 ?g) and cefoxitin (30 ?g), and by the mannitol salt agar supplemented with cefoxitin (MSA-CFOX), susceptibilities of isolates to other antimicrobial agent were determined b
... Show MoreLymphoma is a cancer arising from B or T lymphocytes that are central immune system components. It is one of the three most common cancers encountered in the canine; lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic conditions and to improve decision-making around treating and what treatment type to use. This study aimed to evaluate a potential novel biomarker related to iron metabolism,
... Show MoreThe texture analysis of cancer cells leads to a procedure to distinguish spatial differences within an image and extract essential information. This study used two test tumours images to determine cancer type, location, and geometric characteristics (area, size, dimensions, radius, etc.). The suggested algorithm was designed to detect and distinguish breast cancer using the segmentation-based threshold technique. The method of texture analysis Grey Level Size Zone method was used to extract 11 features: Small Zone Emphasis, Large Zone Emphasis, Low Grey Level Zone Emphasis, High Grey Level Zone Emphasis, Small Zone Low Grey Level Emphasis, Small Zone High Grey Level Emphasis, Large Zone Low Grey Level Emphasis, Large Zone High Gre
... Show MoreThe study area is located within the Hit area, western Iraq. The measurements of Graphical Bristow’s method were carried out by using Pole-dipole array, to delineate the anomaly of apparent resistivity caused by a known cavity target. The survey was applied along two traverses: traverse in W-E direction and traverse in S-N direction above Um El-Githoaa cavity. Data interpretation of the traverse trending W-E, with a-spacing equal to(2m)identified the anomaly of the cavity at a depth of (2.6m), (1.6m) height, and( 9.5m) width, while the actual dimensions of depth, height, and width were (3.80m),( 2.2m), and (12.30m) respectively, with variations of depth equal to (1.2m), high (0.8m), and width( 2.8m). The data interpretation with a-spac
... Show MoreThe goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
This study included the isolation and identification of Aspergillus flavus isolates associated with imported American rice grains and local corn grains which collected from local markets, using UV light with 365 nm wave length and different media (PDA, YEA, COA, and CDA ). One hundred and seven fungal isolates were identified in rice and 147 isolates in corn.4 genera and 7 species were associated with grains, the genera were Aspergillus ,Fusarium ,Neurospora ,Penicillium . Aspergillus was dominant with occurrence of 0.47% and frequency of 11.75% in rice grains whereas in corn grains the genus Neurospora was dominant with occurrence of 1.09% and frequency 27.25% ,results revealed that 20 isolates out of 50 A. flavus isolates were able
... Show More