Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential feature selection approach plays significant role in improving the performance of the proposed model. The proposed feature selection approach is evaluated using real world clinical heart disease dataset collected from University of California Irvine (UCI) data repository. Empirical test on validation set reveals that the proposed model performs well as compared to the existing methods. Overall, the state of-the-art heart disease detection model with classification accuracy of 98.53% is proposed for heart disease detection using SFS and random forest model.
Geotechnical engineering like any other engineering field has to develop and cope with new technologies. This article intends to investigate the spatial relationships between soil’s liquid limit (LL), plasticity index (PI) and Liquidity index (LI) for particular zones of Sulaymaniyah City. The main objective is to study the ability to produce digital soil maps for the study area and determine regions of high expansive soil. Inverse Distance Weighting (IDW) interpolation tool within the GIS (Geographic Information System) program was used to produce the maps. Data from 592 boreholes for LL and PI and 245 boreholes for LI were used for this study. Layers were allocated into three depth ranges (1 to 2, 2 to 4 and 4 to 6)
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreTotal no. of patient (100) stool samples were collected, during the period from February to the end of May of 2008, for children under two years old suffering from non-bloody and bloody diarrhea at (Children Welfare Teaching Hospital) in Baghdad. The study evaluates the relationship between etiological agent of diarrhea and sex, age group, type of feeding, presence of blood in stool of the patients. All samples were examined microscopically to identify parasitic agent and serological test for Rotavirus to identify viral infection, also biochemical and serological tested for specimen's culture on different culture media and antibiotic sensitivity test. Results show from 100 cases 64] represents the etiological agent of diarrhea and
... Show MoreThe aim of the research is to examine the multiple intelligence test item selection based on Howard Gardner's MI model using the Generalized Partial Estimation Form, generalized intelligence. The researcher adopted the scale of multiple intelligences by Kardner, it consists of (102) items with eight sub-scales. The sample consisted of (550) students from Baghdad universities, Technology University, al-Mustansiriyah university, and Iraqi University for the academic year (2019/2020). It was verified assumptions theory response to a single (one-dimensional, local autonomy, the curve of individual characteristics, speed factor and application), and analysis of the data according to specimen partial appreciation of the generalized, and limits
... Show MoreIn this study, 25 clinical isolates of Proteus spp. were collected from urine, wounds and burns specimens from different hospitals in Baghdad city, all isolates were identified by using different bacteriological media, biochemical assays and Vitek-2 system. It was found that 15 (60%) isolates were identifies as Proteus mirabilis and 10 (40 %) isolates were Proteus vulgaris. The susceptibility of P. mirabilis and P. vulgaris isolates towards cefotaxime was (66.6 %) and (44.4 %) respectively; while the susceptibility of P. mirabilis and P. vulgaris isolates towards ceftazidime was (20%). Extended spectrum β-lactamses producing Proteus was (30.7 %). DNA of 10 isolates of P. mirabilis and 4 isolates of P. vulgaris were extracted and detecti
... Show MoreIn this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
In recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny edge detection
... Show MoreThis paper focus on study the variations of monthly tropospheric NO2 concentrations over three Iraqi cities Baghdad (33.3° N, 44.4° E), Basrah (30.56° N, 47.8° E) and Erbil (36.3° N, 44.06° E). Monthly NO2 retrievals from the Ozone Monitoring Instrument (OMI) onboard Aura satellite during the period from October 2004 to March 2013 have been used. The results show a high monthly and annual NO2 concentrations at Baghdad than Basra and Erbil may be attribute to high densely populations and a high economic activity. During the whole period, Baghdad, Basrah and Erbil were exhibited an average of NO2 (8.1±2.5), (3.7±1.3) and (3.3±1.7) in unit 1015 molecules
... Show MorePseudomonas aeruginosa has variety of virulence factors that contribute to its pathogenicity. Therefore, rapid detection with high accuracy and specificity is very important in the control of this pathogenic bacterium. To evaluate the accuracy and specificity of Polymerase Chain Reaction (PCR) assay, ETA and gyrB genes were targeted to detect pathogenic strains of P. aeruginosa. Seventy swab samples were taken from patients with infected wounds and burns in two hospitals in Erbil and Koya cities in Iraq. The isolates were traditionally identified using phenotypic methods, and DNA was extracted from the positive samples, to apply PCR using the species specific primers targeting ETA, the gene encoding for exotoxin A, and gyrB gene. The res
... Show MoreThe Internet of Things (IoT) has become a hot area of research in recent years due to the significant advancements in the semiconductor industry, wireless communication technologies, and the realization of its ability in numerous applications such as smart homes, health care, control systems, and military. Furthermore, IoT devices inefficient security has led to an increase cybersecurity risks such as IoT botnets, which have become a serious threat. To counter this threat there is a need to develop a model for detecting IoT botnets.
This paper's contribution is to formulate the IoT botnet detection problem and introduce multiple linear regression (MLR) for modelling IoT botnet features with discriminating capability and alleviatin
... Show More