Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential feature selection approach plays significant role in improving the performance of the proposed model. The proposed feature selection approach is evaluated using real world clinical heart disease dataset collected from University of California Irvine (UCI) data repository. Empirical test on validation set reveals that the proposed model performs well as compared to the existing methods. Overall, the state of-the-art heart disease detection model with classification accuracy of 98.53% is proposed for heart disease detection using SFS and random forest model.
Abstract
This research deals with Building A probabilistic Linear programming model representing, the operation of production in the Middle Refinery Company (Dura, Semawa, Najaif) Considering the demand of each product (Gasoline, Kerosene,Gas Oil, Fuel Oil ).are random variables ,follows certain probability distribution, which are testing by using Statistical programme (Easy fit), thes distribution are found to be Cauchy distribution ,Erlang distribution ,Pareto distribution ,Normal distribution ,and General Extreme value distribution . &
... Show MoreThe advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages
... Show MoreVariable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage
... Show MoreThe aim was made to specify the effect of hyperthyroidism on B-type natriuretic
peptide (BNP) level. Twenty patients with hyperthyroidism, 20 patients with
hyperthyroidism treated with (35) mg Carbimazole, 12 patients with
hyperthyroidism associated with heart failure and 20 healthy participants were
included in this study. Serum Triiodothyronine (T3), Thyroxin (T4) and Thyroid
stimulating hormone (TSH) have been used for hyperthyroidism diagnosis test, also
serum BNP level was measured. The results showed that the mean ± SE of serum
BNP was significantly (P<0.05) increased in hyperthyroid group (420.76 ± 83.43)
pg/mL and hyperthyroid with heart failure group (728.58±149.06) pg/mL when
compared with the c
Whoever contemplates the Qur'an and recites its texts finds that the Qur'an did not invent or invent words that were unknown before it. Rather, it is the language of the Qur'an which deals with all the matters of the saying. He chose the most honorable of the materials and connected them to the meaning. And in the places of prosperity or sweetness, we find his words easy, to go into the midst of the ills for which it is The Holy Quran chose vocabulary and structures without The son of Ajeeba was one of those distinguished by high taste and linguistic sciences. This ability helped him to analyze and draw, and to explain the ills for which he influenced the singular On the other, and installed on another, and to show the efforts of Ibn Aje
... Show MoreThe quality and cost of constructed buildings are heavily influenced by the performance of design/auditing consultants. Thus, selecting the right design consultant and design auditing consultants is of utmost importance and not an easy task for any construction client. so, the client should specify the efficiency criteria and assess the performance levels of the design and design auditing consultant firm. The study aims to identify the selection criteria of the design consultant in construction projects and also identify the selection criteria of the design auditing consultant for the construction projects by using the Delphi survey with applying the principal components analysis (PCA
Spraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Eye Detection is used in many applications like pattern recognition, biometric, surveillance system and many other systems. In this paper, a new method is presented to detect and extract the overall shape of one eye from image depending on two principles Helmholtz & Gestalt. According to the principle of perception by Helmholz, any observed geometric shape is perceptually "meaningful" if its repetition number is very small in image with random distribution. To achieve this goal, Gestalt Principle states that humans see things either through grouping its similar elements or recognize patterns. In general, according to Gestalt Principle, humans see things through genera
... Show More