Preferred Language
Articles
/
ijs-4354
Reliability Estimation for the Exponential-Pareto Hybrid System
...Show More Authors

     The reliability of hybrid systems is important in modern technology, specifically in engineering and industrial fields; it is an indicator of the machine's efficiency and ability to operate without interruption for an extended period of time. It also allows for the evaluation of machines and equipment for planning and future development. This study looked at reliability of hybrid (parallel series) systems with asymmetric components using exponential and Pareto distributions. Several simulation experiments were performed to estimate the reliability function of these systems using the Maximum Likelihood method  and the Standard Bayes method  with a quadratic loss (QL) function and two priors: non-informative (Jeffery) and informative (Conjugate). Different sample sizes and parameter values are used in these simulation experiments, and the Mean Squared Error (MSE) was used to compare those experiments. The simulation results showed that the standard Bayes method with Conjugate loss function is better than the results from the maximum likelihood method.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
A Comparison of the Methods for Estimation of Reliability Function for Burr-XII Distribution by Using Simulation.
...Show More Authors

This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values

View Publication Preview PDF
Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Proposed Hybrid Sparse Adaptive Algorithms for System Identification
...Show More Authors

Abstract 

For sparse system identification,recent suggested algorithms are  -norm Least Mean Square (  -LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named  -ZA-LMS, 

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Reliability Estimation Of Fuzzy Failure Times Of Free Distribution And It Use To Estimate The Fuzzy Reliability Of Mosul Dam
...Show More Authors

The way used to estimate the fuzzy reliability differs according to the nature of the information of failure time which has been dealt in this research.The information of failure times has no probable distribution to explain it , in addition it has fuzzy quality.The research includes fuzzy reliability estimation of three periods ,the first one from 1986 to 2013,the second one from 2013 to 2033 while the third one from 2033 to 2066 .Four failure time have been chosen to identify the membership function of fuzzy trapezoid represented in the pervious years after taking in consideration the estimation of most researchers, proffional    geologists and the technician who is incharge of maintaining of Mosul Dam project. B

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
On Estimation of the Stress – Strength Reliability Based on Lomax Distribution
...Show More Authors
Abstract<p>The present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.</p>
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Double Stage Shrinkage-Bayesian Estimator for the Scale Parameter of Exponential Distribution
...Show More Authors

  This paper is concerned with Double Stage Shrinkage Bayesian (DSSB) Estimator for lowering the mean squared error of classical estimator ˆ q for the scale parameter (q) of an exponential distribution in a region (R) around available prior knowledge (q0) about the actual value (q) as initial estimate as well as to reduce the cost of experimentations.         In situation where the experimentations are time consuming or very costly, a Double Stage procedure can be used to reduce the expected sample size needed to obtain the estimator. This estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y( ) and for acceptance region R. Expression for

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Applying Shrinkage Estimation Technique of P(Y<Max X1, X2,…, Xk) in Case of Generalized Exponential Distribution
...Show More Authors

     This paper concerned with estimation reliability (­ for K components parallel system of the stress-strength model with non-identical components which is subjected to a common stress, when the stress and strength follow the Generalized Exponential Distribution (GED) with unknown shape parameter α and the known scale parameter θ (θ=1) to be common. Different shrinkage estimation methods will be considered to estimate ­ depending on maximum likelihood estimator and prior estimates based on simulation using mean squared error (MSE) criteria. The study approved that the shrinkage estimation using shrinkage weight function was the best.

 

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Choosing Appropriate Distribution ‏‎by Minitab’s 17 Software to Analysis System Reliability
...Show More Authors

This research aims to choose the appropriate  probability ‎ distribution  ‎‏‎ to the reliability‎        analysis‎ for  an   item through ‎ collected data for operating and stoppage  time of  the case  study.

    Appropriate choice for .probability distribution   is when  the data look to be on or  close the form fitting line for probability plot and test the data  for  goodness of fit .

     Minitab’s 17 software  was used ‎  for this  purpose after  arranging collected data and setting it in the the program‎.

 &nb

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Inference for the Parameter and Reliability Function of Basic Gompertz Distribution under Precautionary loss Function
...Show More Authors

     In this paper, some estimators for the unknown shape parameter and reliability function of Basic Gompertz distribution have been obtained, such as Maximum likelihood estimator and Bayesian estimators under Precautionary loss function using Gamma prior and Jefferys prior. Monte-Carlo simulation is conducted to compare mean squared errors (MSE) for all these estimators for the shape parameter and integrated mean squared error (IMSE's) for comparing the performance of the Reliability estimators. Finally, the discussion is provided to illustrate the results that summarized in tables.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Different Estimators for the shape Parameter and the Reliability function of Kumaraswamy Distribution
...Show More Authors

In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
A Comparative Study on the Double Prior for Reliability Kumaraswamy Distribution with Numerical Solution
...Show More Authors

This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref