Preferred Language
Articles
/
ijs-4333
Feature Extraction in Six Blocks to Detect and Recognize English Numbers

    The Fuzzy Logic method was implemented to detect and recognize English numbers in this paper. The extracted features within this method make the detection easy and accurate. These features depend on the crossing point of two vertical lines with one horizontal line to be used from the Fuzzy logic method, as shown by the Matlab code in this study. The font types are Times New Roman, Arial, Calabria, Arabic, and Andalus with different font sizes of 10, 16, 22, 28, 36, 42, 50 and 72. These numbers are isolated automatically with the designed algorithm, for which the code is also presented. The number’s image is tested with the Fuzzy algorithm depending on six-block properties only. Groups of regions (High, Medium, and Low) for each number showed unique behavior to recognize any number. Normalized Absolute Error (NAE) equation was used to evaluate the error percentage for the suggested algorithm. The lowest error was 0.001% compared with the real number. The data were checked by the support vector machine (SVM) algorithm to confirm the quality and the efficiency of the suggested method, where the matching was found to be 100% between the data of the suggested method and SVM. The six properties offer a new method to build a rule-based feature extraction technique in different applications and detect any text recognition with a low computational cost.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Access
Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithms for English Text Classification: A Systematic Review

Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall

... Show More
Scopus (27)
Crossref (21)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Feature Extraction of Human Facail Expressions Using Haar Wavelet and Neural network

One of the challenging and active research topics in the recent years is Facial Expression. This paper presents the method to extract the features from the facial expressions from still images. Feature extraction is very important for classification and recognition process. This paper involve three stages which contain capture the images, pre-processing and feature extractions. This method is very efficient in feature extraction by applying haar wavelet and Karhunen-Loève Transform (KL-T). The database used in this research is from Cohen-Kanade which used six expressions of anger, sadness fear, happiness, disgust and surprise. Features that have been extracted from the image of facial expressions were used as inputs to the neural networ

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 12 2022
Journal Name
Iraqi Journal Of Science
Multilevel Analysis to Recognize Original Voucher from Faked Voucher

Voucher documents have become a very important information carrier in daily lives to be used in many applications. A certain class of people could exploit the trust and indulge in forging or tampering for short or long term benefits unlawfully. This holds a serious threat to the economics and the system of a nation. The aim of this paper is to recognize original voucher document through its contents. Forgery of voucher document could have serious repercussions including financial losses, so the signature, logo and stamp that are used to determine being a genuine or not by using multilevel texture analysis. The proposed method consists of several operations. First, detection and extraction of signature, logo and stamp images from original

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Proceedings Of The 10th International Joint Conference On Computational Intelligence
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Sun Jan 01 2017
Journal Name
Iec2017 Proceedings Book
Crossref (2)
Crossref
View Publication
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature

... Show More
Scopus (15)
Crossref (6)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Iraqi Journal Of Science
An Improved Method to Recognize the Iraqi License Plates Using Local Projections

The License Plate (LP), is a rectangular metal plate that contains numbers and letters. This plate is fixed onto the vehicle's body. It is used as a mean to identify the vehicle. The License Plate Recognition (LPR) system is a mean where a vehicle can be identified automatically using a computer system. The LPR has many applications, such as security applications for car tracking, or enforcing control on vehicles entering restricted areas (such as airports or governmental buildings). This paper is concerned with introducing a new method to recognize the Iraqi LPs using local vertical and horizontal projections, then testing its performance. The attained success rate reached 99.16%, with average recognition time around 0.012 second for re

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
2016 38th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Scopus (11)
Crossref (9)
Scopus Crossref
View Publication
Publication Date
Mon Dec 01 2014
Journal Name
2014 Ieee Student Conference On Research And Development
Scopus (9)
Crossref (9)
Scopus Crossref
View Publication
Publication Date
Thu Oct 01 2020
Journal Name
Ieee Transactions On Artificial Intelligence
Scopus (22)
Crossref (19)
Scopus Crossref
View Publication