Preferred Language
Articles
/
ijs-4325
Spectroscopic Analysis of CdO: Fe Plasma Generated by Nd: YAG Laser
...Show More Authors

     In this work, the optical emission spectrum technique was used to analyze the optical emission spectrum of (CdO: Fe) plasma produced by laser Nd: YAG with a wavelength of (532) nm, a period of 10 ns, and a focal length of 10 cm in the energy range of (200-500) mJ. The electron temperature (Te) was determined using the method of line intensities ratio. Using the Saha-Boltzmann equation, the electron density (ne) was determined. Other plasma parameters such as plasma frequency (fp), Debye length (λD) and Debye number (ND) were also measured. The CdO: Fe (at a mixing ratio of X= 0.5.) plasma spectrum was observed for different energies. As a function of the laser energies, the changes in electron temperature and densities were studied.  The value of the electron temperature, at X=0.5, was (0.420 - 1.160) eV  for laser energy (200-500) mJ, respectively.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 15 2011
Journal Name
Iraqi Journal Of Laser
Different Wavelength Femtosecond Laser Pulses Generated by Diode Pumped Ti: Sapphire Crystal
...Show More Authors

The relation between the output power and wavelengths for a 532nm 3W frequency doubled diode pumped solid state laser pumped Ti:Sapphire crystal is investigated. A 20 femtosecond pulse at 800 nm is obtained. A 320 mW is found to be the highest power at 800nm. Below this wavelength value and above the power was found to deviate from highest output value.

View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
International Journal Of Nanoscience
Synthesis and Spectroscopic Characterization of Platinum Nanoparticles by Plasma Jet Method
...Show More Authors

In this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Iraqi Journal Of Physics
Synthesis and Characterization of (CdO)_1-x Mg_x films by pulsed laser deposition
...Show More Authors

In this study, the effect of grafting with magnesium (Mg) ratios (0.1, 0.3, 0.5) on the structural and optical properties of cadmium oxide films (CdO) was studied, as these films were prepared on glass bases using the method of pulse laser deposition (PLD). The crystallization nature of the prepared membranes was examined by X-ray diffraction technique (XRD), which showed that the synthesis of the prepared membranes is polycrystalline, and (AFM) images also showed that the increased deformation with magnesium led to an increase in the grain size ratio and a decrease in surface roughness, as well as the absorption coefficient was calculated. And the optical energy gap for the prepared membranes, where it was found that the absorption coef

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Electron Density Estimation by Electrostatic Probe for Plasma Generated Near the Spacecraft Returning to the Earth's Atmosphere
...Show More Authors

     In this work, the electrostatic probe was utilized to estimate the density of electrons for plasma generated around reentry vehicles that have a geometrically blunt nose at high-altitude. The thermocouple uses to measured electron temperature, which is equal to the temperature of the gas, on board the MAC spacecraft. In the spacecraft backflow field, electrostatic probe measurements were taken at five separate regions 1 to 5 cm from the body of the spacecraft. Over an altitude range of 90 to 50 km with an electron density of 108 to 1012 1/cm3, respectively. The measured electron temperature ranged from 0.05 to 0.9 electron volts and the maximum re-entry velocity of the spacecraft was about 7048 m

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Spectroscopic measurements of the electron temperature in low pressure microwave 2.45 GHz argon plasma
...Show More Authors

The main goal of this work is to obtain the plasma electron temperature Te by optical emission spectroscopy of low pressure microwave argon plasma, as a function of working pressure and microwave power. A plasma system was designed and constructed in our laboratory using a magnetron of domestic microwave oven with power 800W without any commercial part. The applied voltage on the magnetron electrical circuit is changed for the purpose of obtaining the variable values of the microwave power. The spectral detection is performed with a spectrometer of wavelength range (200−1000nm). The working pressure and magnetron applied voltage were 0.3-3.0mbar and 180-240V, respectively. Two methods had been applied to estimate the electron temperatu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Optical Emission Spectroscopy for Studying Fe Plasma Parameters Produced by Exploding Wire Technique in Carbon Nanotubes - Water Colloid
...Show More Authors

     The goal of this work is to study plasma parameters for Fe plasma generated by exploding wire (EEW) in carbon nanotubes-water colloid with three current values (50, 100 and 150)A. In this research, the plasma electron temperature (Te), the electron density (ne), electron density (ne), plasma frequency(f p), Debye length (λD) and Debye number (ND) were  found for Fe produced by Arc discharge plasma. Boltzmann plot was used to calculate the plasma electron temperature (Te);electron density (ne) was calculated from  Stark broadening. It was found that the electron temperature values increased from (0.4

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Effect of Target properties on the Plasma Characteristics that produced by Laser at Atmospheric Pressure
...Show More Authors

In this paper, Al and Cu Plasmas that produced by pulsed Nd:YAG laser with fundamental wave length with a pulse duration of 6 nS focused onto Al and Cu targets in atmospheric air are investigated spectroscopically. The influence of pulse laser energy on the some Al and Cu plasmas characteristics was diagnosed by using optical emission spectroscopy for the wavelength range 320-740 nm. The results observed that the increase of pulse laser energy causes to increase all plasma characteristics of both plasmas under study and shown increasing of the emission line intensity. The appearance of the atomic and ionic emission lines of an element in the emission spectrum depends on the ionization energy of target atoms. The plasma characteristics ar

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (4)
Scopus Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Effect of Ag nanoparticles on R6G laser dye hosted by PMMA polymerized by plasma jet
...Show More Authors

This work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees21gr
Effect of cold atmospheric plasma on the wound of diabetic rats by FE-DBD system
...Show More Authors

This study explains the effect of non-thermal (cold) plasma on wound of diabetic rats by (FE-DBD) system, 3cm probe diameter is used. The output power was ranged from (12-20) W. The effect of non-thermal plasma on wounds of a diabetic was observed with different exposure durations (20,30) sec., the plasma exposure duration decreases the sugar level in blood and the diameter of the wound. These results indicate the cold plasma can be used to enhance the insulin level (i.e., blood sugar) and wounds treatment.

View Publication
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Enhancement of Electron Temperature under Dense Homogenous Plasma by Pulsed Laser Beam
...Show More Authors

The applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of   power and duration time of pulsed Nd:YAG laser   was studied on the heating of   plasmas  by inverse bremsstrahlung  for  several values for the electron density ratio. There results for these ca

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref