Recently there has been an urgent need to identify the ages from their personal pictures and to be used in the field of security of personal and biometric, interaction between human and computer, security of information, law enforcement. However, in spite of advances in age estimation, it stills a difficult problem. This is because the face old age process is determined not only by radical factors, e.g. genetic factors, but also by external factors, e.g. lifestyle, expression, and environment. This paper utilized machine learning technique to intelligent age estimation from facial images using support vector machine (SVM) on FG_NET dataset. The proposed work consists of three phases: the first phase is image preprocessing include four stages: grayscale image stage, histogram equalization stage, face detection stage has been carried out using viola jones algorithm, it comprises for four steps namely: Haar like Feature, integral image, Adaboost training, and cascading classifier, the last stage of image preprocessing phase is cropping and resize stage. The second phase is data mining include two stages: feature extraction stage using linear discriminate analysis and machine learning stage using support vector machine. The last phase is age estimation and evaluation. The FG-net dataset is used which divided into seven classes in order to has been became increased accuracy and reduce the execution time, the first class represents 3-7 years, the second class represents 8-13 years, the third class represents 14-19 years, the forth class represents 20-25 years, the fifth class represents 26-30 years, the sixth class represents 31-40 years and the seven class represents 41-50 years. Then, the seven classes are combined into three classes depending on the number of features. The Experimental results display that the proposed system can grant high accuracy. The practical evaluation of the proposed system gives accuracy is 84%.
A comparative investigation of the anatomical characters through a microscopical examination of the prepared transverse sections of the stem was carried out. Six plates with 32 photomicrographs were provided to convincingly show the considerable variations of anatomical characters within the nine examined species. The matrix of 18 anatomical characters which included nine quantitative and nine qualitative was applied for the clustering analysis (CA) followed by the principal component analysis (PCA) using the Multivariate Analysis of Ecological Data, PC-ORD.
The results exhibited significant variations among the species resulting in the construction of an artificial key; this key accurately represents a sufficient tool to display the
Designing machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics
In this paper, a new hybridization of supervised principal component analysis (SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-SPCA, for real large datasets that have a small number of samples in high dimensional space. SGD-SPCA is proposed to become an important tool that can be used to diagnose and treat cancer accurately. When we have large datasets that require many parameters, SGD-SPCA is an excellent method, and it can easily update the parameters when a new observation shows up. Two cancer datasets are used, the first is for Leukemia and the second is for small round blue cell tumors. Also, simulation datasets are used to compare principal component analysis (PCA), SPCA, and SGD-SPCA. The results sh
... Show MoreThe paper is concerned with posterior analysis of five exponentiated (Weibull, Exponential, Inverted Weibull, Pareto, Gumbel) distrebutions. The expressions for Bayes estimators of the shape parameters have been derived under four different prior distributions assuming four different loss functions. The posterior predictive distributions have been obtained, and the comparison between estimators made by using the mean squared errors through generated different sample sizes by using simulation technique. In general, the performance of estimators under Chi-square prior using squared error loss function is the best.
A new simple and sensitive spectrophotometric method is described for quantification of Nifedipine (NIF) and their pharmaceutical formulation. The selective method was performed by the reduction of NIF nitro group to yield primary amino group using zinc powder with hydrochloric acid. The produced aromatic amine was submitted to oxidative coupling reaction with pyrocatechol and ammonium ceric nitrate to form orange color product measured spectrophotometrically with maximum absorption at 467nm. The product was determined through flow injection analysis (FIA) system and all the chemical and physical parameters were optimized. The concentration range from 5.0 to 140.0 μg.mL-1 was obeyed Beer’s law with a limit of detection and quantitatio
... Show MoreBored piles settlement behavior under vertical loaded is the main factor that affects the design requirements of single or group of piles in soft soils. The estimation of bored pile settlement is a complicated problem because it depends upon many factors which may include ground conditions, validation of bored pile design method through testing and validation of theoretical or numerical prediction of the settlement value. In this study, a prototype single and bored pile group model of arrangement (1*1, 1*2 and 2*2) for total length to diameter ratios (L/D) is 13.33 and clear spacing three times of diameter, subjected to vertical axial loads. The bored piles model used for the test was 2000
... Show MoreTrace Elements (Cd, Pb, Cu, Zn, Ni) level were examined in hair of donors from industrial areas, cities and village, and in permanent contact with a polluted workplace environment in lattakia. Hair sample were analyzed for their contents of the trace elements by inductivity coupled plasma- mass spectrometer (ICP- MS). It was found that the contents of (Cd, Pb, Cu, Zn, Ni) in the hair were significantly higher in the industrial areas and cities, while in the village had the lower concentration of elements. Correlation coefficients between the levels of the elements in hair found in this study showed that hair is a good indicator of Environmental Pollution.
Laser-Induced Breakdown Spectroscopy (LIBS) has been documented as an Atomic Emission Spectroscopy (AES) technique, utilising laser-induced plasma, in order to analyse elements in materials (gases, liquids and solid). The Nd:YAG laser passively Q-switched at 1064nm and 9ns pulse duration focused by convex lens with focal length 100 mm to generates power density 5.5×1012 Mw/mm2 with optical spectrum in the range 320-740 nm. Four soil samples were brought from different northern region of Iraq, northern region (Beiji, Sherkat, Serjnar and Zerkary).
The soil of the Northern region of Beige, Sherkat, Serjnar and Zarkary has abundant ratios of the elements P [0.08, 0.09, 0.18, 0.18] and Ca [0.61, 0.15, 0.92, 0.92] while it lack of Si [0.0
In this paper, a mathematical model consisting of the prey- predator model with treatment and disease infection in prey population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The stability analyses of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.
There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.