The Normalization Difference Vegetation Index (NDVI), for many years, was widely used in remote sensing for the detection of vegetation land cover. This index uses red channel radiances (i.e., 0.66 μm reflectance) and near-IR channel (i.e., 0.86 μm reflectance). In the heavy chlorophyll absorption area, the red channel is located, while in the high reflectance plateau of vegetation canopies, the Near-IR channel is situated. Senses of channels (Red & Near- IR) read variance depths over vegetation canopies. In the present study, a further index for vegetation identification is proposed. The normalized difference vegetation shortwave index (NDVSI) is defined as the difference between the cubic bands of Near- IR and Shortwave infrared radiation (SWIR) divided by their sums. The radiances or reflectances are included in this index from the Near-IR channel and WSIR2 channel (2.1 μm). The NDVSI is less sensitivite to atmospheric effects as compared to NDVI. By comparing the one NDVSI index with the two indexes (NDVI, SAVI) of vegetation cover, good correlations were found between NDVI and NDVSI (R2=0.917) and between SAVI and NDVSI (R2=0.809. Accordingly, the proposed index can be taken into consideration as an independent vegetation index
In this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.
With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreIntelligent Transportation Systems (ITS) have been developed to improve the efficiency and safety of road transport by using new technologies for communication. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) are a subset of ITS widely used to solve different issues associated with transportation in cities. Road traffic congestion is still the most significant problem that causes important economic and productivity damages, as well as increasing environmental effects. This paper introduces an early traffic congestion alert system in a vehicular network, using the internet of things (IoT) and fuzzy logic, for optimizing the traffic and increasing the flow. The proposed system detects critical driving conditions, or any emerge
... Show MoreIn the present paper, Arabic Character Recognition Edge detection method based on contour and connected components is proposed. First stage contour extraction feature is introduced to tackle the Arabic characters edge detection problem, where the aim is to extract the edge information presented in the Arabic characters, since it is crucial to understand the character content. The second stage connected components appling for the same characters to find edge detection. The proposed approach exploits a number of connected components, which move on the character by character intensity values, to establish matrix, which represents the edge information at each pixel location .
... Show MoreDigital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft
... Show MoreTested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
Nine Iraqi varieties of barley (Hordeum vulgare L.) has been differentiated and diagnosed using simple sequence repeat markers to detect their genetic polymorphism. Six SSR primers were used for genetic screening of barley samples (IPA 265, IPA 99, Tuwaitha, Hitra, Rayhan, Shuaa, Bawadi, Samir and Al_khair). These primers generated total PCR product (11) bands divided to 8 polymorphic bands 3 monomorphic bands. the percentage of polymorphism 80% ranged between (50-100%). a mean value of polymorphic band per primer was 1.6 . these primers produced amplification fragment at Molecular weight between 75-900 bp. One unique band was generated at size 200bp, this band can be used as a DNA profiling of all studied genotypes. These results appear
... Show MoreSuicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o
... Show More