Many geophysical methods have been applied to locate groundwater in Nigeria’s rural and urban villages. Locating groundwater in low permeability formations like shales and siltstones is even more challenging due to the difficulty of mapping fracture zones within these formations. The fracture zones serve as potential aquifers in low permeability formations and have been the object of groundwater search in shales, siltstones and other low permeability formations. The electrical resistivity method has proven helpful in fracture mapping within low permeability formations due to the existing resistivity contrast usually observed between the fractured and non-fractured sections in the Shales and Siltstones. Three vertical electrical geosounding datasets (VES 1, VES 2 and VES 3) were acquired in the Schlumberger configuration, using a maximum current electrode spacing of 200m to delineate the fracture zones based on their electrical resistivities. The acquired datasets were processed and modelled using IP12 Win software, while the processed datasets were correlated with local geology to estimate the depths of the fractured shales in the area. Results show five modelled geo-electric layers with depths to the fractured shales ranging from 17-25m, while aquifer thicknesses range from 7 to 12m. Aquifer resistivities range from 58 - 115 ohm-m. The curves are primarily of the QH type. One of the Vertical Electrical Sounding Data points (VES 2) encountered an anomalously low resistivity zone at a depth range of 5 to 8m which was interpreted as a galena lode. The low resistivity zone has been confirmed through exploratory drilling to tie with Lead-Zinc lodes at a depth of 8m.
Two simple, sensitive, accurate and economic methods A and B have been developed for the quantitative estimation of vancomycin hydrochlorid (VHC) and its formulations using another two drug compounds as a coupling reagents.The proposed methods are based on a coupling reaction between VHC and diazotized procain (method A) or diazotized sulphacetamide sodium (method B) in alkaline medium to form intense yellow, water-soluble dyes that are very stable and have a maximum absorption at 447 and 439 nm for methods A and B respectively. Regression analysis of Beer’s law plots showed good correlation in the concentration ranges 1-28 and 1-45 μg ml-1 for methods A and B, respectively with a molar absorbtivity of 4.605×104 L mol-1cm-1 and 4.516
... Show MoreSimple, cheap, sensitive, and accurate kinetic- spectrophotometric method has been developed for the determination of naringenin in pure and supplements formulations. The method is based on the formation of Prussian blue. The product dye exhibits a maximum absorbance at 707 nm. The calibration graph of naringenin was linear over the range 0.3 to 10 µg ml-1 for the fixed time method (at 15 min) with a correlation coefficient (r) and percentage linearity (r2%) were of 0.9995 and 99.90 %, respectively, while the limit of detection LOD was 0.041 µg ml-1. The method was successfully applied for the determination of naringenin in supplements with satisfac
... Show MoreThis paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.
Wireless Sensor Networks (WSNs) are composed of a collection of rechargeable sensor nodes. Typically, sensor nodes collect and deliver the necessary data in response to a user’s specific request in many application areas such as health, military and domestic purposes. Applying routing protocols for sensor nodes can prolong the lifetime of the network. Power Efficient GAthering in Sensor Information System (PEGASIS) protocol is developed as a chain based protocol that uses a greedy algorithm in selecting one of the nodes as a head node to transmit the data to the base station. The proposed scheme Multi-cluster Power Efficient GAthering in Sensor Information System (MPEGASIS) is developed based on PEGASIS routing protocol in WSN. The aim
... Show More<span>We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NF<sub>min.</sub>) of 3.6dB, input and output insertion losses (S<sub>11</sub> and S<sub>22</sub>) below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are
... Show MoreThis research work aims to the determination of molybdenum (VI) ion via the formation of peroxy molybdenum compounds which has red-brown colour with absorbance wave length at 455nm for the system of ammonia solution-hydrogen peroxide-molybdenum (VI) using a completely newly developed microphotometer based on the ON-Line measurement. Variation of responses expressed in millivolt. A correlation coefficient of 0.9925 for the range of 2.5-150 ?g.ml-1 with percentage linearity of 98.50%. A detection limit of 0.25 ?g.ml-1 was obtained. All physical and chemical variable were optimized interferences of cation and anion were studied classical method of measurement were done and compared well with newly on-line measurements. Application for the use
... Show MoreThe main goal of this work is to obtain the plasma electron temperature Te by optical emission spectroscopy of low pressure microwave argon plasma, as a function of working pressure and microwave power. A plasma system was designed and constructed in our laboratory using a magnetron of domestic microwave oven with power 800W without any commercial part. The applied voltage on the magnetron electrical circuit is changed for the purpose of obtaining the variable values of the microwave power. The spectral detection is performed with a spectrometer of wavelength range (200−1000nm). The working pressure and magnetron applied voltage were 0.3-3.0mbar and 180-240V, respectively. Two methods had been applied to estimate the electron temperatu
... Show More