The transition of customers from one telecom operator to another has a direct impact on the company's growth and revenue. Traditional classification algorithms fail to predict churn effectively. This research introduces a deep learning model for predicting customers planning to leave to another operator. The model works on a high-dimensional large-scale data set. The performance of the model was measured against other classification algorithms, such as Gaussian NB, Random Forrest, and Decision Tree in predicting churn. The evaluation was performed based on accuracy, precision, recall, F-measure, Area Under Curve (AUC), and Receiver Operating Characteristic (ROC) Curve. The proposed deep learning model performs better than other prediction models and achieves a high accuracy rate of 91%. Furthermore, it was noticed that the deep learning model outperforms a small size Neural Network for the customer churn prediction.
A description of the implementation of integrated practical work in a remote laboratory was presented in this paper. The student, in real time, can access an online web page in order to manipulate a practical work of digital electronics. This work is based on the use of an embedded system PcDuino. The hardware architecture and software solutions are described, as well as the supervision tool that allows the student to follow changes in the output states of the Practical Work remotely.
In this study, we attempt to provide healthcare service to the pilgrims. This study describes how a multimedia courseware can be used in making the pilgrims aware of the common diseases that are present in Saudi Arabia during the pilgrimage. The multimedia courseware will also be used in providing some information about the symptoms of these diseases, and how each of them can be treated. The multimedia courseware contains a virtual representation of a hospital, some videos of actual cases of patients, and authentic learning activities intended to enhance health competencies during the pilgrimage. An examination of the courseware was conducted so as to study the manner in which the elements of the courseware are applied in real-time learn
... Show MoreResearch in the field of English language as a foreign language (EFL) has been consistently highlighted the need for communicative competence skills among students. Accompanied by the validated positive impact of technologies on students’ skills’, this study aims to explore the strategies used by EFL students in enhancing their communicative competence using digital platforms and identify the factors of developing communicative competence using digital platforms (linguistic factors, environmental factors, psychological factors, and university-related factors). The mixed-method research design was utilized to obtain data from Iraqi undergraduate EFL students. The study was conducted in the Iraqi University in Baghdad Iraq. EFL undergradu
... Show MoreHeart disease is a non-communicable disease and the number 1 cause of death in Indonesia. According to WHO predictions, heart disease will cause 11 million deaths in 2020. Bad lifestyle and unhealthy consumption patterns of modern society are the causes of this disease experienced by many people. Lack of knowledge about heart conditions and the potential dangers cause heart disease attacks before any preventive measures are taken. This study aims to produce a system for Predicting Heart Disease, which benefits to prevent and reduce the number of deaths caused by heart disease. The use of technology in the health sector has been widely practiced in various places and one of the advanced technologies is machine lea
... Show MoreThe study area of Baghdad region and nearby areas lies within the central part of the Mesopotamia plain. It covers about 5700 Km2. The remote sensing techniques are used in order to produce possible Land Use – Land Cover (LULC) map for Baghdad region and nearby areas depending on Landsat TM satellite image 2007. The classification procedure which was developed by USGS used and followed with field checking in 2010. Land Use-land cover digital map is created depending on maximum likelihood classifications (ML) of TM image using ERDAS 9.2.The LULC raster image is converted to vector structure, using Arc GIS 9.3 Program in order to create a digital LULC map. This study showed it is possible to produce a digital map of LULC and it can be co
... Show MoreThis paper presents results about the existence of best approximations via nonexpansive type maps defined on modular spaces.
This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB
... Show MoreGraph is a tool that can be used to simplify and solve network problems. Domination is a typical network problem that graph theory is well suited for. A subset of nodes in any network is called dominating if every node is contained in this subset, or is connected to a node in it via an edge. Because of the importance of domination in different areas, variant types of domination have been introduced according to the purpose they are used for. In this paper, two domination parameters the first is the restrained and the second is secure domination have been chosn. The secure domination, and some types of restrained domination in one type of trees is called complete ary tree are determined.
Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show MoreThe main objective of e-learning platforms is to offer a high quality instructing, training and educational services. This purpose would never be achieved without taking the students' motivation into consideration. Examining the voice, we can decide the emotional states of the learners after we apply the famous theory of psychologist SDT (Self Determination Theory). This article will investigate certain difficulties and challenges which face e-learner: the problem of leaving their courses and the student's isolation.
Utilizing Gussian blending model (GMM) so as to tackle and to solve the problems of classification, we can determine the learning abnormal status for e-learner. Our framework is going to increase the students’ moti