The transition of customers from one telecom operator to another has a direct impact on the company's growth and revenue. Traditional classification algorithms fail to predict churn effectively. This research introduces a deep learning model for predicting customers planning to leave to another operator. The model works on a high-dimensional large-scale data set. The performance of the model was measured against other classification algorithms, such as Gaussian NB, Random Forrest, and Decision Tree in predicting churn. The evaluation was performed based on accuracy, precision, recall, F-measure, Area Under Curve (AUC), and Receiver Operating Characteristic (ROC) Curve. The proposed deep learning model performs better than other prediction models and achieves a high accuracy rate of 91%. Furthermore, it was noticed that the deep learning model outperforms a small size Neural Network for the customer churn prediction.
The research seeks to identify the contemporary events that face the use of electronic payment methods to localize the salaries of state employees and its impact in enhancing the mental image of customers, and to achieve this purpose from the fact that a questionnaire was designed and distributed to an optional sample of (31) individual customers (employees) dealing With the researched private banks, it has been analyzed and reached a number of conclusions and recommendations, the most prominent of which is the lack of modernity of electronic payment methods by customers, which is reflected in the mental image of customers and the achievement of their satisfaction, in the Emiratization project for salaries needs an advanced leade
... Show MoreThe increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning ha
... Show MoreThe dubbing process for the Foreign Dramas by the Kurdish language became a serious phenomenon in the Kurdish satellite TV, especially in the past few years. It attracted a wide audience, especially young adolescents. And prepared by some breakthrough hostile to Kurdish culture and value coordinated by others remedy for the structural gaps and lapses have, as a result of climate which is brought into existence globalization and secretions variety dimensional, saturated value and cognitive effects bearing a strong identity of its elements. From here, the problem of this research is the ambiguity of their role in a series of developmental processes Kurdish awareness of young people and the extent of the impact that caused it.
This
... Show MoreAudio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some
... Show MoreThe coronavirus is a family of viruses that cause different dangerous diseases that lead to death. Two types of this virus have been previously found: SARS-CoV, which causes a severe respiratory syndrome, and MERS-CoV, which causes a respiratory syndrome in the Middle East. The latest coronavirus, originated in the Chinese city of Wuhan, is known as the COVID-19 pandemic. It is a new kind of coronavirus that can harm people and was first discovered in Dec. 2019. According to the statistics of the World Health Organization (WHO), the number of people infected with this serious disease has reached more than seven million people from all over the world. In Iraq, the number of people infected has reached more than tw
... Show MoreInformation is an essential and valuable object in all systems. The more information you have about your issue, the better you can conform to the world around you. Moreover, information recognizes companies and provides influence that helps one company be more effective than another. So, protecting this information using better security controls and providing a high level of access to authorized parties becomes an urgent need. As a result, many algorithms and encryption techniques have been developed to provide a high level of protection for system information. Therefore, this paper presents an enhancement to the Blowfish algorithm as one of the cryptography techniques. Then it proposes an enhancement for increasing efficiency
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show More