Obstacle avoidance is one of the major tasks needed to be carefully focused by the autonomous system designers. In this digital era, most industries are moving towards autonomous systems. Obstacle avoidance is considered as a primary concern for any autonomous system. In this paper, a prototype of an autonomous vehicle is presented, which is capable of obstacle avoidance using an ultrasonic sensor for its movement and avoidance. An Arduino microcontroller is used to achieve the desired operation. In order to achieve the desired task of the proposed system, a proper methodology is followed which combines appropriate selection of hardware components as well as logic design of actions for obstacle avoidance. The proposed system can easily detect an obstacle, and move accordingly towards the safe path, by first detecting and then verifying the safe path. This can be very useful if implemented in real life. It can ultimately reduce the chances of accidents of trains and road vehicles which will save lots of lives. It can also detect broken roads and train tracks, which may result in reducing the chances of accidents to some extent. The accuracy of the autonomous vehicle depends on the output received by the ultrasonic sensor; therefore, it is not affected by the lighting environment. The prototype has been tested in various experimental settings and achieves appropriate results.
Setting-up a 3D geological model both from field and subsurface data is a typical task in geological studies involving natural resource evaluation and hazard assessment. In this study a 3D geological model for Mishrif Formation in Garraf oil field has been set-up using Petrel software. Mishrif Formation represents the most important reservoir in Garraf oil field. Four vertical oil wells (GA-4, GA-A1P, GA-3 and GA-5) and one directional well (GA-B8P) were selected in Garraf Oil Field in order to set-up structural and petrophysical (porosity and water saturation) models represented by a 3D static geological model in three dimensions. Structural model shows that Garraf oil field represents a domal structure that shows continuous growth as i
... Show MoreA simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.
Polarization manipulation elements operating at visible wavelengths represent a critical component of quantum communication sub-systems, equivalent to their telecom wavelength counterparts. The method proposed involves rotating the optic axis of the polarized input light by an angle of 45 degree, thereby converting the fundamental transverse electric (TE0) mode to the fundamental transverse magnetic (TM0) mode. This paper outlines an integrated gallium phosphide-waveguide polarization rotator, which relies on the rotation of a horizontal slot by 45 degree at a wavelength of 700 nm. This will ultimately lead to the conception of a mode hybridization phenomenon in the waveguide. The simulation results demonstrate a polarization co
... Show MoreIn this paper we present a study on Peristaltic of fractional generalized Maxwell viscoelastic fluid through a porous medium. A modified Darcy-Brinkman model is utilized to simulate the flow of a generalized Maxwell fluid in a porous medium in an inclined channel with slip effect. The governing equation is simplified by assuming long wavelength and low Reynolds number approximations. The numerical and approximate analytical solutions of the problem are obtained by a semi-numerical technique, namely the homotopy perturbation method. The influence of the dominating physical parameters such as fractional Maxwell parameter, relaxation time, amplitude ratio, permeability parameter, Froude number, Reynolds number and inclination of channel on
... Show MoreA 3D Geological model was generated using an advanced geostatistical method for the Cretaceous reservoir in the Bai Hassan oil field. In this study, a 3D geological model was built based on data from four wells for the petrophysical property distribution of permeability, porosity, water saturation, and NTG by using Petrel 2021 software. The geological model was divided into a structural model and a property model. The geological structures of the cretaceous reservoir in the Bai Hassan oil field represent elongated anticline folds with two faults, which had been clarified in the 3D Structural model. Thirteen formations represent the Cretaceous reservoir which includes (Shiranish, Mashurah, U.kometan, Kometan Shale, L. Kometan, Gulnen
... Show MoreThe aim of this paper is to derive a posteriori error estimates for semilinear parabolic interface problems. More specifically, optimal order a posteriori error analysis in the - norm for semidiscrete semilinear parabolic interface problems is derived by using elliptic reconstruction technique introduced by Makridakis and Nochetto in (2003). A key idea for this technique is the use of error estimators derived for elliptic interface problems to obtain parabolic estimators that are of optimal order in space and time.
Polarization manipulation elements operating at visible wavelengths represent a critical component of quantum communication sub-systems, equivalent to their telecom wavelength counterparts. The method proposed involves rotating the optic axis of the polarized input light by an angle of 45 degree, thereby converting the fundamental transverse electric (TE0) mode to the fundamental transverse magnetic (TM0) mode. This paper outlines an integrated gallium phosphide-waveguide polarization rotator, which relies on the rotation of a horizontal slot by 45 degree at a wavelength of 700 nm. This will ultimately lead to the conception of a mode hybridization phenomeno
This study synthesized zeolite 4A, and hierarchical composite structure consisting of zeolite 4A- carbon were successfully prepared. Hydrothermal method was used to grow a layer of zeolite 4A over porous carbon surfaces to enhance mass transfer and increase surface area of zeolite. The products then were used to remove radioactive cesium137Cs from liquid wastewater. Iraqi dates leaves midribs (DM) were used as locally available agricultural waste to prepare low- cost porous carbon, using carbonization method in tubular furnace at 900C for two hours. Hierarchical porous structures including zeolite are prepared by mechanically activating the carbon surface via Ultrasonicating nanoparticles suspension of ground zeolite type 4A.F
... Show More