Mixed spinel Mg1-xZnxFe2O4 ferrites (where x = 0, 0.2, 0.4, and 0.6) nanoparticles were synthesized by using microwave-assisted combustion route. As-synthesized powdered samples were checked by XRD analysis, field emission-scanning electron microscopy, and vibration sample magnetometer to investigate the structural, morphology, and magnetic properties, respectively. XRD results exhibited that the crystallite size increases with the decrease of Zn+2 ion concentration for series of mixed spinel Mg1-xZnxFe2O4 ferrite expect x=0.2. All the mixed spinel Mg1-xZnxFe2O4 ferrite has different grain sizes with uniform distribution also presence voids in the samples. Pure magnesium ferrite has a lower net magnetization value but when magnesium ions (Mg+2) are replaced by zinc ions (Zn+2) then the value of saturation magnetization increases.
Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .
In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More