Preparation of nanoparticles is one of the important ways to increase the biological effectiveness of materials. There are several methods to prepare the polyhydroxybutyrate (PHB) nanoparticles. Here, a new method is used based on exposing PHB to ultrasound waves under variable pH conditions. In the present study, PHB was added to distilled water and pH was adjusted to 4 by HCl (1 N). The suspension was exposed to ultrasound waves at 4500 kh for 25 seconds. Then, pH was readjusted to 10 by NaoH (1N) and the mixture was incubated for 2 h at 21 oC. Finally, the pH was adjusted to 7 by HCl (1 N) and the mixture was incubated at 21 oC for 18 h. The characterization of the prepared nanoparticles was achieved by using atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), ultraviolet (UV) spectrophotometer, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The results demonstrated the formation of nanoparticles, especially after examinations by SEM and AFM, which showed that the diameter of particles was between 22.9 and 73.95. The present study confirmed that the method of exposing PHB to gradient pH and high levels of ultrasonic waves could produce PHB nanoparticles.
Cancer disease has a complicated pathophysiology and is one of the major causes of death and morbidity. Classical cancer therapies include chemotherapy, radiation therapy, and immunotherapy. A typical treatment is chemotherapy, which delivers cytotoxic medications to patients to suppress the uncontrolled growth of cancerous cells. Conventional oral medication has a number of drawbacks, including a lack of selectivity, cytotoxicity, and multi-drug resistance, all of which offer significant obstacles to effective cancer treatment. Multidrug resistance (MDR) remains a major challenge for effective cancer chemotherapeutic interventions. The advent of nanotechnology approach has developed the field of tumor diagnosis and treatment. Cancer nanote
... Show MoreCopper is a cheaper alternative to various noble metals with a range of potential applications in the field of nanoscience and nanotechnology. However, copper nanoparticles have major limitations, which include rapid oxidation on exposure to air. Therefore, alternative pathways have been developed to synthesize metal nanoparticles in the presence of polymers and surfactants as stabilizers, and to form coatings on the surface of nanoparticles. These surfactants and polymeric ligands are made from petrochemicals which are non- renewable. As fossil resources are limited, finding renewable and biodegradable alternative is promising.The study aimed at preparing, characterizing and evaluating the antibacterial properties of copper nanoparticle
... Show MoreThe utilization of metal oxide nanoparticles, especially zinc oxide, is of a great importance in the medical field because of its physical and chemical properties as well as its antimicrobial potential effects. In our study, the ZnO nanoparticles were synthesized by the precipitation method where pH=14. ZnO nanoparticles were characterized by ultraviolet–visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscope (AFM). Antifungal activity of the ZnO was tested against candida albicans. The results showed that C. albicans (15 samples) became resistant to the fungal activity after testing its sensitivity to several types of fungal antibiotics. UV-vis spectroscopy, XRD, TEM and A
... Show MoreIn this paper, magnesium oxide nanoparticles (MgO NPS) have been prepared and characterized and its concentration effect has been studied on polymers surface (MgO NPS). The results showed that the degradation of poly methyl methacrylate increased when using such metal oxide. The results also showed that the metal oxide increased the degradation of poly methyl methacrylate. X-ray diffraction, scanning electron microscopy, atomic force microscopy were used to study the morphological characteristics and size of nano MgO particles analysis. Films were prepared by mixing the different masses of MgO NPS (0.025, 0.05, 0.1, 0.2 and 0.4) % with a polymer solution ratio (W/V) 7 %. Photo-
... Show MoreCopper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show MoreAntimicrobial resistance is one of the most significant threats to public health worldwide. As opposed to using traditional antibiotics, which are effective against diseases that are multidrug-resistant, it is vital to concentrate on the most innovative antibacterial compounds. These innate bacterial arsenals under the term «bacteriocins» refer to low-molecularweight, heat-stable, membrane-active, proteolytically degradable, and pore-forming cationic peptides. Due to their ability to attack bacteria, viruses, fungi, and biofilm, bacteriocins appear to be the most promising, currently accessible alternative for addressing the antimicrobial resistance (AMR) problem and minimizing the negative effects of antibiotics on the host’s m
... Show MoreThe eggshell cuticle is the proteinaceous outermost layer of the eggshell which regulates water exchange and protects against entry of micro-organisms. Outer eggshell and cuticle protein was extracted from domestic chicken. The aim of the research is to find out the effect of the treated and untreated nano particles of egg shells with micro wave cold plasma on the effectiveness of E. coli (negative bacteria) that infect the skin and measure the diameter of bacterial inhibition zone, the eggshell has been prepared by a chemical method (sol gel) and measure the level of acidity and the PH is neutral. The result of Atomic Force Microscope (AFM) shows that the particles diameters become smaller with nano-particles solution than for egg
... Show MoreMetal oxide nanoparticles, including iron oxide, are highly considered as one of the most important species of nanomaterials in a varied range of applications due to their optical, magnetic, and electrical properties. Iron oxides are common compounds, extensive in nature, and easily synthesized in the laboratory. In this paper, iron oxide nanoparticles were prepared by co-precipitation of (Fe+2) and (Fe+3) ions, using iron (II and III) sulfate as precursor material and NH4OH solution as solvent at 90°C. After the synthesis of iron oxide particles, it was characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These tests confirmed the obtaining o
... Show MoreThis work presents the characteristics of plasma produced by fundamental wavelength (1064 nm) Q- switched Nd:YAG laser on Ag:Ni alloy in distilled water were investigated at different laser energies by optical emission spectroscopy technique. The size of produced nanoparticles from Ag:Ni target in distilled water were studied, by x-ray diffraction, UV-visible absorbance and atomic force microscopy, at different laser energies. Spectroscopic measurements show that electron temperature and electron density increase with increasing laser energy. It was found from AFM measurements that the produced nanoparticle size decrease from 97.13 nm to 71.20 nm, while XRD shows that the crestalline size decrease from 15.5 nm to 9 nm with increasing pul
... Show MoreThe present work involved synthesis of new thiozolidinone derivatives,These derivatives could be divided into three type of compounds; quinolin-2-one[V]a,b ,Schiff bases[VI]a,b and imide compounds[VII]a-d. The reaction p-Hydroxyacetophenone with thiosemicarbazide led to formation thiosemicarbazon compound [II], the reacted of thiosemicarbazone with chloro acetic acid in CH3CO2Na led to yield 4- thiazelidinone compound[III] in addition, thiosemicarbazide was POCl3 to [III] give [IV] compound used intermediates to synthesis new compounds of reacted with two type of coumarin in glacial acetic acid to give quinolin-2-one[V]a,b, The later compound refluxing with different benzaldehyde in dry benzene and glacial acetic acid give Schiff bases[VI]a
... Show More