In data mining and machine learning methods, it is traditionally assumed that training data, test data, and the data that will be processed in the future, should have the same feature space distribution. This is a condition that will not happen in the real world. In order to overcome this challenge, domain adaptation-based methods are used. One of the existing challenges in domain adaptation-based methods is to select the most efficient features so that they can also show the most efficiency in the destination database. In this paper, a new feature selection method based on deep reinforcement learning is proposed. In the proposed method, in order to select the best and most appropriate features, the essential policies in deep reinforcement learning are defined, and then the selection features are applied for training random forest, k-nearest neighborhood and support vector machine classifiers. The trained classifiers with the considered features are evaluated on the target database. The results are evaluated with the criteria of accuracy, sensitivity, positive and negative predictive rates in the classifiers. The achieved results show the superiority of the proposed method of feature selection when used in domain adaptation. By implementing the RF classifier on the VisDA-2018 database and the Syn2Real database, the classification accuracy in the feature selection of the proposed deep learning reinforcement has increased compared to the two-feature selection of Laplace monitoring and feature selection states. The classification sensitivity with the help of SVM classifier on the Syn2Real databases had the highest values in the feature selection state of the proposed deep learning reinforcement. The obtained number 100 is a positive predictive rate in the Syn2Real database with the help of SVM classifier and in the case of selecting the proposed feature, it indicates its superiority. The negative predictive rate in the Syn2Real database in the state of feature selection of the proposed deep reinforcement learning was 100%, which showed its superiority in comparison with 90.1% in the state of selecting the Laplace monitoring feature. Gmean in KNN classifier on the Syn2Real database has improved in the feature selection state of the proposed deep learning reinforcement in comparison to without feature selection state.
Phishing is an internet crime achieved by imitating a legitimate website of a host in order to steal confidential information. Many researchers have developed phishing classification models that are limited in real-time and computational efficiency. This paper presents an ensemble learning model composed of DTree and NBayes, by STACKING method, with DTree as base learner. The aim is to combine the advantages of simplicity and effectiveness of DTree with the lower complexity time of NBayes. The models were integrated and appraised independently for data training and the probabilities of each class were averaged by their accuracy on the trained data through testing process. The present results of the empirical study on phishing websi
... Show MoreItem Difficulty and Item Discrimination Coefficient for School and College Ability Tests (SCAT) Advanced Form in Classical Test Theory (CTT) and Item Response Theory (IRT) and the Correlation among Them Mohammad moqasqas Haifa T. Albokai Assistant Professor of Measurement and Evaluation Associate Professor of Measurement and Evaluation College of Education, Taibah University The aim of this study was to study the item difficulty and item discrimination of the SCAT (advance form) with CTT, and IRT, and to study the correlation among them. To do this, the researchers used the data of their previous study, which conducted in (2011). It consisted of (3943) subject. Then, they used two-statistical programs (TAP, Bilog-MG-3) to obtain the item
... Show MoreThe acceptance sampling plans for generalized exponential distribution, when life time experiment is truncated at a pre-determined time are provided in this article. The two parameters (α, λ), (Scale parameters and Shape parameters) are estimated by LSE, WLSE and the Best Estimator’s for various samples sizes are used to find the ratio of true mean time to a pre-determined, and are used to find the smallest possible sample size required to ensure the producer’s risks, with a pre-fixed probability (1 - P*). The result of estimations and of sampling plans is provided in tables.
Key words: Generalized Exponential Distribution, Acceptance Sampling Plan, and Consumer’s and Producer Risks
... Show MoreMost dinoflagellate had a resting cyst in their life cycle. This cyst was developed in unfavorable environmental condition. The conventional method for identifying dinoflagellate cyst in natural sediment requires morphological observation, isolating, germinating and cultivating the cysts. PCR is a highly sensitive method for detecting dinoflagellate cyst in the sediment. The aim of this study is to examine whether CO1 primer could detect DNA of multispecies dinoflagellate cysts in the sediment from our sampling sites. Dinoflagellate cyst DNA was extracted from 16 sediment samples. PCR method using COI primer was running. The sequencing of dinoflagellate cyst DNA was using BLAST. Results showed that there were two clades of dinoflag
... Show MoreThe research aims to examine the evaluation of educational quality management and the ways to improve it in the College of Education for Women at the University of Baghdad from the point of view of the academic staff. The research community consisted of (288) participants comprising all members of the academic staff in the College of Education for Women at the University of Baghdad for the academic year (2019-2020). As for the questionnaire, it was distributed to the academic staff of the scientific departments according to their affiliation for the purpose of identifying the availability of the requirements of the quality of the teaching service provided to them by the educational institution. The researcher adopted a questionnaire deve
... Show MoreThe research aimed to prepare a measure of the importance of enlightenment, academic education, and applied skills for third-stage female students, including teaching methods from their point of view/College of Education and Sports Sciences/University of Baghdad/Al-Jadriyah. The researchers used descriptive description in the comprehensive research procedures, an appropriate methodology in achieving the research objectives, sufficient for interpretations, how important is the academic teacher’s knowledge of teaching methods for student learning, what are the roles that the learners have acquired from the academic teacher. The scale of importance and horror consists of 15 items. The research population includes female students of t
... Show More