Internet of Vehicle (IoV) is one of the most basic branches of the Internet of Things (IoT), which provides many advantages for drivers and passengers to ensure safety and traffic efficiency. Most IoV applications are delay-sensitive and require resources for data storage and computation that cannot be afforded by vehicles. Thus, such tasks are always offloaded to more powerful nodes, like cloud or fog. Vehicular Fog Computing (VFC), which extends cloud computing and brings resources closer to the edge of the network, has the potential to reduce both traffic congestion and load on the cloud. Resources management and allocation process is very critical for satisfying both user and provider needs. However, the strategy of task offloading to fog node in constraints of energy and latency is still an open issue. Several research works have tackled the resource scheduling problem in the field of VFC; however, the recent studies have not carefully addressed the transmission path to the destination node, nor has it considered the energy consumption of vehicles. This paper aims to optimize the task offloading process in the VFC system in terms of latency and energy objectives while taking the deadline constraint into considerations by adopting a Multi-Objective Evolutionary Algorithm (MOEA). Four different execution/transmission models are proposed where vehicle resources are utilized for tasks execution and transmission, and the well-known Dijkstra's algorithm is adopted to find the minimum path between each two nodes. The simulation results show that the models which involve the vehicles in the transmission process have reduced the latency and the total energy for the VFC system significantly in comparison with other models and the current state of the art methods.
In this article, the solvability of some proposal types of the multi-fractional integro-partial differential system has been discussed in details by using the concept of abstract Cauchy problem and certain semigroup operators and some necessary and sufficient conditions.
The theory of Multi-Criteria Decision Making (MCDM) was introduced in the second half of the twentieth century and aids the decision maker to resolve problems when interacting criteria are involved and need to be evaluated. In this paper, we apply MCDM on the problem of the best drug for rheumatoid arthritis disease. Then, we solve the MCDM problem via -Sugeno measure and the Choquet integral to provide realistic values in the process of selecting the most appropriate drug. The approach confirms the proper interpretation of multi-criteria decision making in the drug ranking for rheumatoid arthritis.
The purpose of this study is aimed to lay down an arranged platform suited to Iraqi constructional associations which in charge to carry out multi constructional projects, as it fulfilled management requirements and supervising, so that low - cost projects will be controlled in due term and quality. Based on primary info and observed data collected, the study thesis has been formulated in this way: Iraqi constructional sector bodies which are in charge to implement simultaneously multi constructional projects in need to reformulate its organized structure so that it will be more fitted to management and control of these projects. This thesis includes a
theoretical part contained presenting the most important resources locally and int
The conventional procedures of clustering algorithms are incapable of overcoming the difficulty of managing and analyzing the rapid growth of generated data from different sources. Using the concept of parallel clustering is one of the robust solutions to this problem. Apache Hadoop architecture is one of the assortment ecosystems that provide the capability to store and process the data in a distributed and parallel fashion. In this paper, a parallel model is designed to process the k-means clustering algorithm in the Apache Hadoop ecosystem by connecting three nodes, one is for server (name) nodes and the other two are for clients (data) nodes. The aim is to speed up the time of managing the massive sc
... Show MoreThe present research aims to design an electronic system based on cloud computing to develop electronic tasks for students of the University of Mosul. Achieving this goal required designing an electronic system that includes all theoretical information, applied procedures, instructions, orders for computer programs, and identifying its effectiveness in developing Electronic tasks for students of the University of Mosul. Accordingly, the researchers formulated three hypotheses related to the cognitive and performance aspects of the electronic tasks. To verify the research hypotheses, a sample of (91) students is intentionally chosen from the research community, represented by the students of the college of education for humanities and col
... Show MoreAbstract
Business organizations are using the technological innovations like cloud computing (CC) as a developmental platform in order to improve the performance of their information systems. In that context, our paper discusses know-how in employing the public and private CC to serve as platforms to develop the evaluation system of annual employees' performance (ESAEP) at Iraqi universities. Therefore, we ask the paper question which is “Is it possible to adopt the innovative solutions of ICTs (Like: public and private CC) for finding the developmental vision about management information systems at business organizations?”. In addition, the paper aim
... Show MorePathological blood clot in blood vessels, which often leads to cardiovascular diseases, are one of the most common causes of death in humans. Therefore, enzymatic therapy to degrade blood clots is vital. To achieve this goal, bromelain was immobilized and used for the biodegradation of blood clots. Bromelain was extracted from the pineapple fruit pulp (Ananas comosus) and purified by ion exchange chromatography after precipitation with ammonium sulphate (0-80 %), resulting in a yield of 70%, purification fold of 1.42, and a specific activity of 1175 U/mg. Bromelain was covalently immobilized on functionalized multi-walled carbon nanotubes (MWCNT), with an enzyme loading of 71.35%. The results of the characterization of free and immobilized
... Show MoreDiverting river flow during construction of a main dam involves the construction of cofferdams, and tunnels, channels or other temporary passages. Diversion channels are commonly used in wide valleys where the high flow makes tunnels or culverts uneconomic. The diversion works must form part of the overall project design since it will have a major impact on its cost, as well as on the design, construction program and overall cost of the permanent works. Construction costs contain of excavation, lining of the channel, and construction of upstream and downstream cofferdams. The optimization model was applied to obtain optimalchannel cross section, height of upstream cofferdam, and height of downstream cofferdamwith minimum construction cost
... Show More