In this paper, a new class of ordinary differential equations is designed for some functions such as probability density function, cumulative distribution function, survival function and hazard function of power function distribution, these functions are used of the class under the study. The benefit of our work is that the equations ,which are generated from some probability distributions, are used to model and find the solutions of problems in our lives, and that the solutions of these equations are a solution to these problems, as the solutions of the equations under the study are the closest and the most reliable to reality. The existence and uniqueness of solutions the obtained equations in the current study are discussed. The exact solutions of these obtained differential equations are calculated using some methods. In addition, the approximate solutions are determined by the Variation Iteration Method (VIM) and Runge-Kutta of 4th Order (RK4) method. The chosen approximate methods VIM and RK4 are used in our study because they are reliable, famous, and more suitable for solving such generated equations. Finally, some examples are given to illustrate the behavior of the exact and the approximate solutions of the differential equations with the scale parameters of power function distribution.
Incident laser power and concentration effects on fluorescence emission from DCM dye in PMMA polymer have been investigated. Different concentrations of the dye were used. It was found that the fluorescence intensity increased with increasing of the concentration of the dye, with a red shift. In addition, it was found that the fluorescence intensity increased with the increase of the incident laser power I0.
This paper is concerned with Double Stage Shrinkage Bayesian (DSSB) Estimator for lowering the mean squared error of classical estimator ˆ q for the scale parameter (q) of an exponential distribution in a region (R) around available prior knowledge (q0) about the actual value (q) as initial estimate as well as to reduce the cost of experimentations. In situation where the experimentations are time consuming or very costly, a Double Stage procedure can be used to reduce the expected sample size needed to obtain the estimator. This estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y( ) and for acceptance region R. Expression for
... Show MoreThe goal beyond this Research is to review methods that used to estimate Logistic distribution parameters. An exact estimators method which is the Moment method, compared with other approximate estimators obtained essentially from White approach such as: OLS, Ridge, and Adjusted Ridge as a suggested one to be applied with this distribution. The Results of all those methods are based on Simulation experiment, with different models and variety of sample sizes. The comparison had been made with respect to two criteria: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).
Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
The ration card system is a kind of support provided by the state to individuals through the provision of essential goods at subsidized prices during the period of war or crisis. For many years, the ration card was an essential source of food supplies to Iraqis, especially under the economic siege of the nineties, But after the events of 2003 and the passage of Iraq's political and economic changes required radical reforms in the ration card system according to the recipes of the International Monetary Fund. It was evident from the estimation of the demand function that the price did not have the greatest impact on this type of goods because the ration card items are subsidized by the government. There is also a
... Show MoreThe weak and strong forms are so called because it is not their lexical content that primary matter, but the role they have in the sentence. The problematic confusion, our students encounter, in recognizing and producing the correct pronunciation of weak and strong forms of the English function words is the main incentive behind conducting this study. In order to gather the data, this paper used two types of tests: a recognition test and a production test. The general results reached through the analysis of the students' answers seem to conform to the researcher's assumption: students face a critical problem in recognizing and producing correct pronunciation of the weak and strong forms of the English funct
... Show MoreThe theories of metric spaces and fuzzy metric spaces are crucial topics in mathematics.
Compactness is one of the most important and fundamental properties that have been widely used in Functional Analysis. In this paper, the definition of compact fuzzy soft metric space is introduced and some of its important theorems are investigated. Also, sequentially compact fuzzy soft metric space and locally compact fuzzy soft metric space are defined and the relationships between them are studied. Moreover, the relationships between each of the previous two concepts and several other known concepts are investigated separately. Besides, the compact fuzzy soft continuous functions are studie
... Show MoreIn this work, the classical continuous mixed optimal control vector (CCMOPCV) problem of couple nonlinear partial differential equations of parabolic (CNLPPDEs) type with state constraints (STCO) is studied. The existence and uniqueness theorem (EXUNTh) of the state vector solution (SVES) of the CNLPPDEs for a given CCMCV is demonstrated via the method of Galerkin (MGA). The EXUNTh of the CCMOPCV ruled with the CNLPPDEs is proved. The Frechet derivative (FÉDE) is obtained. Finally, both the necessary and the sufficient theorem conditions for optimality (NOPC and SOPC) of the CCMOPCV with state constraints (STCOs) are proved through using the Kuhn-Tucker-Lagrange (KUTULA) multipliers theorem (KUTULATH).