In this paper, a new class of ordinary differential equations is designed for some functions such as probability density function, cumulative distribution function, survival function and hazard function of power function distribution, these functions are used of the class under the study. The benefit of our work is that the equations ,which are generated from some probability distributions, are used to model and find the solutions of problems in our lives, and that the solutions of these equations are a solution to these problems, as the solutions of the equations under the study are the closest and the most reliable to reality. The existence and uniqueness of solutions the obtained equations in the current study are discussed. The exact solutions of these obtained differential equations are calculated using some methods. In addition, the approximate solutions are determined by the Variation Iteration Method (VIM) and Runge-Kutta of 4th Order (RK4) method. The chosen approximate methods VIM and RK4 are used in our study because they are reliable, famous, and more suitable for solving such generated equations. Finally, some examples are given to illustrate the behavior of the exact and the approximate solutions of the differential equations with the scale parameters of power function distribution.
This study seeks to address the impact of marketing knowledge dimensions (product, price, promotion, distribution) on the organizational performance in relation to a number of variables which are (efficiency, effectiveness, market share, customer satisfaction), and seeks to reveal the role of marketing knowledge in organizational performance.
In order to achieve the objective of the study the researcher has adopted a hypothetical model that reflects the logical relationships between the variables of the study. In order to reveal the nature of these relationships, several hypotheses have been presented as tentative solutions and this study seeks to verify the validity of these hypotheses.
... Show MoreThe fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.
This paper presents an analysis solution for systems of partial differential equations using a new modification of the decomposition method to overcome the computational difficulties. Convergence of series solution was discussed with two illustrated examples, and the method showed a high-precision, being a fast approach to solve the non-linear system of PDEs with initial conditions. There is no need to convert the nonlinear terms into the linear ones due to the Adomian polynomials. The method does not require any discretization or assumption for a small parameter to be present in the problem. The steps of the suggested method are easily implemented, with high accuracy and rapid convergence to the exact solution,
... Show Moreمدة تولي رئاسة السلطة في الفكر السياسي الاسلامي المعاصر
In this study, the effect of pumping power on the conversion efficiency of nonlinear crystal (KTP) was investigated using laser pump-power technique. The results showed that the higher the pumping power values, the greater the conversion efficiency (η) and, as the crystal thickness increases within limitations, the energy conversion efficiency increases at delay time of (0.333 ns) and at room temperature. Efficiency of 80% at length of KTP crystal (L = 1.75 X 10-3 m) and Pin = 28MW, and also, compare the experimental results with numerical results by using MATLAB program.
The contractual imbalance is perceived today by the majority of the doctrine as being one of the pitfalls to the execution of the contracts. As a result, most legislations grant judges the power to intervene to restore it. Granting the judge the power to complete the contract raises the question of the extent to which the judge can obtain such power. Is it an absolute authority that is not limited? If so, is it a broad discretion in which the judge operates in his conscience, or is it a power of limited scope by specific legal texts and conventions? This is what we will try to answer in this research.
Weibull Distribution is one of most important distribution and it is mainly used in reliability and in distribution of life time. The study handled two parameter and three-parameter Weibull Distribution in addition to five –parameter Bi-Weibull distribution. The latter being very new and was not mentioned before in many of the previous references. This distribution depends on both the two parameter and the three –parameter Weibull distributions by using the scale parameter (α) and the shape parameter (b) in the first and adding the location parameter (g)to the second and then joining them together to produce a distribution with five parameters.
... Show MoreThis paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP). The given boundary value problem is written in its discrete weak form (WEFM) and proved have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud
... Show MoreIn this paper, we develop the Hille and Nehari Type criteria for the oscillation of all solutions to the Fractional Differential Equations involving Conformable fractional derivative. Some new oscillatory criteria are obtained by using the Riccati transformations and comparison technique. We show the validity and effectiveness of our results by providing various examples.
In this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth
... Show More