In this paper, a new class of ordinary differential equations is designed for some functions such as probability density function, cumulative distribution function, survival function and hazard function of power function distribution, these functions are used of the class under the study. The benefit of our work is that the equations ,which are generated from some probability distributions, are used to model and find the solutions of problems in our lives, and that the solutions of these equations are a solution to these problems, as the solutions of the equations under the study are the closest and the most reliable to reality. The existence and uniqueness of solutions the obtained equations in the current study are discussed. The exact solutions of these obtained differential equations are calculated using some methods. In addition, the approximate solutions are determined by the Variation Iteration Method (VIM) and Runge-Kutta of 4th Order (RK4) method. The chosen approximate methods VIM and RK4 are used in our study because they are reliable, famous, and more suitable for solving such generated equations. Finally, some examples are given to illustrate the behavior of the exact and the approximate solutions of the differential equations with the scale parameters of power function distribution.
Some physical properties enthalpy (?H), entropy (?s), free energy (?G),capacities(?cp?) and Pka values) for valine in dimethyl foramideover the temperature range 293.15-318.15K, were determined by direct conductance measurements. The acid dissociation at six temperature was examined at solvent composition x2) involving 0.141 of dimethyl foramide . As results, calculated values have been used to determine the dissociation constant and the associated thermodynamic function for the valine in the solvent mixture over temperatures in the range 293.15-318.15 k. The Pka1, and Pka2 were increased with increasing temperature.
A large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system gen
... Show MoreThis study aims to assess the accuracy of digital elevation model (DEM) created with utilization of handheld Global Positioning System (GPS) and comparing with Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), version 2. It is known that the quality of the DEM is affected by both of accuracy of elevation at each pixel (absolute accuracy) and accuracy of presented morphology (relative accuracy). The University of Baghdad, Al Jadriya campus was selected as a study area to create and analysis the resulting DEM. Additionally, Geographic Information System (GIS) was used to visualize, analyses and interpolate GPS track points (elevation data) of the study area. In this
... Show MoreReceipt date:12/7/2020 accepted date:24/1/2021 Publication date:31/12/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
The constant characteristic of international relations is the constant change due to political, economic and military developments in addition to technology, and this in turn has led to many transformations in the concept of power, its uses, and the elements that form power and its distribution, and according to those variables, the concept of power has shifted from hard to soft, up to smart powe
... Show More
Abstract
The use of modern scientific methods and techniques, is considered important topics to solve many of the problems which face some sector, including industrial, service and health. The researcher always intends to use modern methods characterized by accuracy, clarity and speed to reach the optimal solution and be easy at the same time in terms of understanding and application.
the research presented this comparison between the two methods of solution for linear fractional programming models which are linear transformation for Charnas & Cooper , and denominator function restriction method through applied on the oil heaters and gas cookers plant , where the show after reac
... Show MoreRadial density distribution function of one particle D(r1) was calculated for main orbital of carbon atom and carbon like ions (N+ and B- ) by using the Partitioning technique .The results presented for K and L shells for the Carbon atom and negative ion of Boron and positive ion for nitrogen ion . We observed that as atomic number increases the probability of existence of electrons near the nucleus increases and the maximum of the location r1 decreases. In this research the Hartree-fock wavefunctions have been computed using Mathcad computer software .
This paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit RK method for solving ODEs . This approach is intended to integrate exactly initial value problems (IVPs), their solutions consist of linear combinations of the group functions and for exponentially fitting problems, with being the problem’s major frequency utilized to improve the precision of the method. The modified method EDITRK4 is a new three-stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with functions that are exponential as solutions. Different forms of -order ODEs must be derived using the modified system, and when the same issue is reduced to a framework of equations that can be sol
... Show MoreFractional calculus has paid much attention in recent years, because it plays an essential role in many fields of science and engineering, where the study of stability theory of fractional differential equations emerges to be very important. In this paper, the stability of fractional order ordinary differential equations will be studied and introduced the backstepping method. The Lyapunov function is easily found by this method. This method also gives a guarantee of stable solutions for the fractional order differential equations. Furthermore it gives asymptotically stable.
The electron correlation for inter-shells (1s 2p), (1s 3p) and (1s 3d) was described by the inter-particle radial distribution function f(r12). It was evaluated for Li-atom in the different excited states (1s2 2p), (1s2 3p) and (1s2 3d) using Hartree-Fock approximation (HF). The inter particle expectation values for these shells were also evaluated. The calculations were performed using Mathcad 14 program.
Most of the Weibull models studied in the literature were appropriate for modelling a continuous random variable which assumes the variable takes on real values over the interval [0,∞]. One of the new studies in statistics is when the variables take on discrete values. The idea was first introduced by Nakagawa and Osaki, as they introduced discrete Weibull distribution with two shape parameters q and β where 0 < q < 1 and b > 0. Weibull models for modelling discrete random variables assume only non-negative integer values. Such models are useful for modelling for example; the number of cycles to failure when components are subjected to cyclical loading. Discrete Weibull models can be obta
... Show More