Three different rotational speeds (800, 1000 and 1250 rpm) and traverse speeds of (0.42 mm/sec) at a constant taped pin have been employed to produce the stir zones generated from friction stir processing (FSP) of near eutectic Al- 14 wt.% Si alloy. The processed samples were thoroughly analyzed macroscopically and microscopically. The as-cast microstructure of eutectic (α Al+ Si) and primary Si were fragmented to produce spheroidization of small size of Si and deformed matrix. The stir zones showed an increase in hardness from around 45-50 Hv for as-cast to 40-65 depending on the variables applied. All the processed samples were characterized by advanced and retreated regions with large single piping defects formed mainly at the retreated region. High temperature spheroidization at 500 oC with two soaking times of 10 and 20 hrs was applied for the processed sample of 1000 rpm to investigate the effect of heat treatment on the silicon fragmentation and hardness. Growth and fragmentation of Si have taken place at soaking time of 10 hrs. At soaking time of 20 hrs noticeable microvoids and macrovoids were formed at the stir zones. Microhardness of both the advancing and the retreating regions decreased with increasing soaking time.
Non-thermal plasmas have become popular as plasma technology has advanced in various fields, including waste management, aerospace technology, and medicinal applications. They can be used to replace combustion fuels in stationary hall motors and need little effort to keep running for longer periods of time. To improve overall system performance, non-reactive gases such as )Xe, Ar, and Kr) are utilized in pure or mixed form to generate plasma. Since DC glow discharge is a fundamental topic of importance, these gases have been researched. The paper concentrates on 2-D modeling and simulation. DC glow-discharge tubes are utilized with argon gas to create plasma and learn about its properties. The magnitude of the electron density, increases wi
... Show MoreThis experiment was conducted to study the effect of feeding diets containing different levels of parsley on the blood biochemical characteristics of local Iraqi geese. A total of twenty-four local geese, one year old, were used in this experiment during the period from the beginning of October to the end of December. The birds were allocated for Four treatment groups consisted of six geese each. Treatment groups were as follows: Control diet (T1) (free from parsley), T2: Control diet + 80 g / d parsley, T3: Control diet + 160 g / d parsley; T4: Control diet + 240 g / d parsley. At the end of experiment, blood samples were obtained from all geese by venipuncture from brachial vein and blood plasma samples were prepared. Blood biochemical tr
... Show MoreZinc oxide films (ZnO) are prepared by an electrolysis technique and without vacuum and then annealed atvarious temperatures (300,400,500)OC for an hour. The structural analysis performed by X-Ray diffraction (XRD) shows,dominant orientation of this films is plane (101), has a hexagonal structure and polycrystalline pattern and it was is found that the crystal size increases(24,29) nm at annealing temperatures (300, 400)° C, but the crystal size decreases to (20 nm) at annealing temperature (500 ° C). As the results of a surface nature study of these films showed by examining the atomic force microscope (AFM), the grain size increases from (60.79 to 88.11) nm, and the surface roughnes
... Show MoreThe effect of SiO 2 ) Silica) on the dielectric and physical properties of Mnx-Ni1 -xFe2O4 ،، X=0.5 is studies. The samples are prepared by the conventional manufacturing
method. We found that the physical and dielectric properties of Mn-Ni ferrite change
considerably with the substituent samples .the variation of dielectric constant as a function of
frequency of ferrite system decrease with frequency increases and increase with the increase
the concentration of SiO 2 . It was found that the increase of SiO 2 concentration of all our
samples produce an increase in mass density and decrease with porosities
The experimental was carried out to study the effect of Mentha viridis and Apium graveolensleaves by 5, 10 gm/kg soil that added then to soil alone and 5, 10 gm/kg soil together on growth of Beta vulgaris plants. The results showed that increased significantly germination accelerator, plant height leaves number fresh and dry maters, chlorophyll content, absolute growth rate, inflorescence number, fertilizer efficiency while the N, P, K and Fe increased in all the treatment plants compared with control plants.
The experiment was carried out in College of Agricultural Engineering Sciences, University of Baghdad during November 1, 2019 to June 1, 2020. The experiment was designed according to a randomized complete block design. Each block contained 18 experimental units that included the three study factors. The first factor interaction between two inoculum densities and application methods, three levels control, treatment of seeds inoculation with 5g plant and treatment of seedlings inoculation whith 30g plant . The second factor was three -1 -1concentrations of spraying of kinetin 0, 75 and 150 mg L , and third factor include two levels of organic manure) and addition of fertilizer 2% of -1 the weight of the soil (O2). The results showed a signif
... Show MoreIn this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas
... Show MoreSloped solar chimney system is a solar chimney power plant with a sloped collector. Practically, the sloped collector can function as a chimney, then the chimney height can be reduced and the construction cost would be reduced.The continuity, Naver-stockes, energy and radiation transfer equations have been solved and carried out by Fluent software. The governing equations are solved for incompressible, 3-D, steady, turbulent standard model with Boussiuesq approximation to develop for the sloped solar chimney system in this study and evaluate the performance of solar chimney power plant in Baghdad city of Iraq numerically by Fluent (14) software with orking conditions such as solar radiation intensity (30
... Show More