Nickel nanoparticles (Ni-nanoparticles) were incorporated as an antecedent utilizing nickel acetate and as a reducing agent, extraction plantApiumgraveolens. The reason fo choosing this plant over many other is because it is easily accessible, carries many antioxidants, non-toxic, and there are no dangerous residues and stabilizing agent at 60℃ under stirrer. The progress of the reaction was monitored by observing a change in color of the obtained solution. The UV–Vis utilized to screen the development of Ni-nanoparticles inside a surface plasmon band (SPB) at 275 nm gives a phantom mark appropriate to the arrangement of nanoparticles. Examining the electron microscope (SEM) photos showed the Ni-nanoparticles to be of cubic shape with sizes in te range of (6-45 nm). GC-MS s spectra were utilized to show the debasement when the expansion of nickel nanoparticles. The most noteworthy accessibility of aliphatic mixes at the hour of (1.3, 1.46, 1.62, 12.04) min. In the interim after the expansion of nanoparticle, the outcomes show a high bounty at (1.29, 2.1) min. The importance of this research lies in the possibility of breaking large organic compounds into simpler compounds, as the presence of large organic compounds with high molecular weights leads to pollution of sea and ocean waters when poured into it as a result of sea transport.
The species of Cr (III), Cr (VI) in biological samples and V(IV), V(V) in foods & plants samples were determined by spectrophotometric methods. Integrated spectral studies of complexes [Cr (III, VI)-DPC], [Cr (VI)-bipy], [VO-SH], [V (V)-8-HQ] which included a study of the optimum conditions for the complexes formation by the investigation of the chemical and physical variables affecting each complex formation, the nature of complexes, the preparation of calibration curves of the complexes and treated the resulted data by modern statistical methods and study the interfering species. Interferences were removed to explain the reactions thermodynamically by determining Ecell, Keq. and ∆G values and includes a study of
... Show MoreThere are many problems facing the economic entities as a result of its mass production &variation of its products , the matter which had increased the need & importance of cost accounting which is regarded a main tool for the managerial control.
The actual costing system is unable to meet the contemporary management needs ,so the Standard costing system appear to provide the management with required information to perform its functions by the best use& way.
This research aims to determine the standard cost for the direct material for oil extraction activity by applying it in the north oil company.
In this work we used the environmentally friendly method to prepared ZrO2 nanoparticles utilizing the extract of Thyms plant In basic medium and at pH 12, the ZrO2 NPs was characterized by different techniques such as FTIR, ultraviolet visible, Atomic force microscope, Scanning Electron Microscopy, X-ray diffraction and Energy dispersive X-ray. The average crystalline size was calculated using the Debye Scherres equation in value 7.65 nm. Atomic force microscope results showed the size values for ZrO2 NPs were 45.11nm, and there are several distortions due to the presence of some large sizes. Atomic force microscope results showed the typical size values for ZrO2 NPs were 45.11 nm, and there are several distortions due to the presence of so
... Show MoreMercury can have significant impact on petroleum and related industries, it is also known to poison catalysts used in refining processes.Wet ash methods was widely used in determination of mercury in crude oil but the elemental and organic mercury are volatile and losses are also expected .An investigation of the use of Aqueous solution to prevent loss of mercury during wet digestion resulted in consistently good recoveries from crude oil samples.In this research diluted aqueous solution of sodium polysulfide is used and the parameters studied are polysulfide aqueous solution concentration, time, and ratio of the aqueous solution to crude oil,and will take different forms of heavy crude oil from several fields and the previous measuremen
... Show MoreThe cost-effective carbon cross-linked Y zeolite nanocrystals composite (NYC) was prepared using an eco-friendly substrate prepared from bio-waste and organic adhesive at intermediate conditions. The green synthesis method dependent in this study assures using chemically harmless compounds to ensure homogeneous distribution of zeolite over porous carbon. The greenly prepared cross-linked composite was extensively characterized using Fourier transform infrared, nitrogen adsorption/desorption, Field emission scanning electron microscope, Dispersive analysis by X-ray, Thermogravimetric analysis, and X-ray diffraction. NYC had a surface area of 176.44 m2/g, and a pore volume of 0.0573 cm3/g. NYC had a multi-function nature, sustained at a long-
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreCopper is a cheaper alternative to various noble metals with a range of potential applications in the field of nanoscience and nanotechnology. However, copper nanoparticles have major limitations, which include rapid oxidation on exposure to air. Therefore, alternative pathways have been developed to synthesize metal nanoparticles in the presence of polymers and surfactants as stabilizers, and to form coatings on the surface of nanoparticles. These surfactants and polymeric ligands are made from petrochemicals which are non- renewable. As fossil resources are limited, finding renewable and biodegradable alternative is promising.The study aimed at preparing, characterizing and evaluating the antibacterial properties of copper nanoparticle
... Show More