In this work, has been a studied the effect of thermal treatment using different annealing temperatures (373, 423 and 473) K in vacuum on structural and morphological properties of organic semiconductor Alq3:C60 thin films which are prepared by the spin coating on a glass, silicon and porous silicon. These films have been coated on substrates with speed of 2000 rpm. The structure properties of Tris(8-hydroxyquinoline) aluminum (III) (Alq3) and fullerene (C60) (100:1) and (100:10) blend as-deposited and treated have been studied by X-ray diffraction (XRD) for glass only and morphological properties by Atomic Force Microscope (AFM) for silicon and porous silicon substrates. The results of XRD pattern shows that the structure of (Alq3:C60) as-deposited and annealed thin films are polycrystalline in nature for both mixed weight ratio. The result of AFM measurements show that grain size increase is due to the increases of surface energy at high temperature. Surface roughness increasing and decreased randomly with the temperature can be attributed to the random distributions of the grains and also due to the phase change.
Designing machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics
In this work, spinel ferrites (NiCoFe2O4) were prepared as thin films by dc reactive dual-magnetron co-sputtering technique. Effects of some operation parameters, such as inter-electrode distance, and preparation conditions such as mixing ratio of argon and oxygen in the gas mixture, on the structural and spectroscopic characteristics of the prepared samples were studied. For samples prepared at inter-electrode distance of 5 cm, only one functional group of OH- was observed in the FTIR spectra as all bands belonging to the metal-oxygen vibration were observed. Similarly, the XRD results showed that decreasing the pressure of oxygen in the gas mixture lead to grow more crystal planes in the samples prepare
... Show MoreThe traction property is one of the important mechanical properties, especially the rotary parts which are subjected to constant and variable loads There are many methods used to improve this property, and the shoot peening by metal balls is considered the most critical one. the study focuses on this characteristic of steel CK35 used in many engineering applications as the rotating shafts and railway This study shows that the fatigue strength is improved by14% after shoot peening with metal balls. The study includs the rehabilitation of damaged samples as a result of fatigue corrosion. The standard solution adopted was 36% MgCl2 with a 30 days immersion period. These samples has been improved by 6% after it decreased by18% d
... Show MoreThe present work aims to fabricate n-i-p forward perovskite solar cell (PSC) withئ structure (FTO/ compact TiO2/ compact TiO2/ MAPbI3 Perovskite/ hole transport layer/ Au). P3HT, CuI and Spiro-OMeTAD were used as hole transport layers. A nano film of 25 nm gold layer was deposited once between the electron transport layer and the perovskite layer, then between the hole transport layer and the perovskite layer. The performance of the forward-perovskite solar cell was studied. Also, the role of each electron transport layer and the hole transport layer in the perovskite solar cell was presented. The structural, morphological and electrical properties were studied with X-ray diffractometer, field emission s
... Show MoreResearch in Iraq has expanded in the field of material technology involving the properties of the lightweight concrete using natural aggregate. The use of the porcelinate aggregate in the production of structural light concrete has a wide objective
and requires a lot of research to become suitable for practical application. In this work metakaolin was used to improve compressive strength of lightweight porcelinate concrete which usually have a low compressive strength about 17 MPa . The effect of metakaolin on compressive, splitting tensile, flexure strengths and modulus of elasticity of lightweight porcelinate concrete have been investigated. Many experiments were carried out by replacing cement with different percentages of
met
This study investigates the ionic conduction dependence on the size of alkaline cations in gel polymer electrolytes based on double iodide can enhance by incorporating a salt having a bulky cation.
... Show MoreIn this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu
In this work, carbon-doped copper oxide thin films were deposited by the reactive DC sputtering method for use as selective absorbents. The properties of the DC discharge plasma were studied, using the emission spectrum, in the presence of pure argon and by mixing it with oxygen once and carbon dioxide again to know the effect of adding these gases on the properties of the resulting plasma used in the deposition of films. The structural properties of the deposited thin films prepared with different flow ratio of carbon dioxide gas were studied using x-ray diffraction. To examine the selective absorber coatings, the reflectance within the UV-Vis spectrum was measured to calculate the percentage of energy absorbed by solar radia
... Show More