In this work, has been a studied the effect of thermal treatment using different annealing temperatures (373, 423 and 473) K in vacuum on structural and morphological properties of organic semiconductor Alq3:C60 thin films which are prepared by the spin coating on a glass, silicon and porous silicon. These films have been coated on substrates with speed of 2000 rpm. The structure properties of Tris(8-hydroxyquinoline) aluminum (III) (Alq3) and fullerene (C60) (100:1) and (100:10) blend as-deposited and treated have been studied by X-ray diffraction (XRD) for glass only and morphological properties by Atomic Force Microscope (AFM) for silicon and porous silicon substrates. The results of XRD pattern shows that the structure of (Alq3:C60) as-deposited and annealed thin films are polycrystalline in nature for both mixed weight ratio. The result of AFM measurements show that grain size increase is due to the increases of surface energy at high temperature. Surface roughness increasing and decreased randomly with the temperature can be attributed to the random distributions of the grains and also due to the phase change.
Generally the a.c. conductivity shows a power law in frequency s () where the exponent s ≤ 1. As the frequency goes to zero the conductivity become frequency independent. The a.c. conductivity was studied for the Ge1-xSex thin films to see how the selenium contents affect the permittivity and the permeability for the Ge1-x Sex. The thin films prepared by thermal evaporation at room temperature and under vacuum (~2 x10-5toor) using Edward coating unit model 306A. From the relation between ln conductivity and ln w, the effect of selenium contents in Ge1-x Sex thin films on the exponent value, the relaxation time and the maximum barrier height. An algebric fitting method for circles and circular arcs was used to find the permit
... Show MoreThe electrical properties of the AlNiCo thin films with thickness (1000oA) deposited on glass substrates using Ion – Beam sputtering (IBS) technique under vacuum <10-6 torr have been studied . Also it studied the effect of annealing temperature from this films , It is found that the effective energy decrease with increase of temperature and the conductivity decrease with increase temperature 323oK but after this degree the conductivity increasing .
In this study, Cobalt Oxide nanostructure was successfully prepared using the chemical spray pyrolysis technique. The cobalt oxide phase was analysed by X-ray Diffraction (XRD) and proved the preparation of two cobalt oxide phases which are Co3O4 and CoO phases. The surface morphology was characterized by Scanning Electron Microscope (SEM) images showing the topography of the sample with grain size smaller than 100 nm. The optical behavior of the prepared material was studied by UV-Vis spectrophotometer. The band gap varied as 1.9 eV and 2.6 eV for Co3O4 prepared from cobalt sulphate precursor, 2.03 eV and 4.04 eV for Co3O4 prepared from cobalt nitrate precursor, 2.04 eV and 4.01 eV for CoO prepared from cobalt chloride precursor where th
... Show MoreStudy was made on the optical properties of Ge2oSe8othinfilms prepared by vac-uum evaporation as radiated by (0,34,69) Gy of 13 ray.The optical band gab Eg and tailing band A.Et were studied in the photon energy range ( 1 to 3)eV. The a-Ge20Se8o film was found to be indirect gap with energy gap of (1.965,1.9 , 1.82) eV at radiated by B ray with absorption doses of (0,34,69)Gy respectively.The Ea and AEt of Ge20Se80 films showed adecrease in E8 and an increase in AEt with radiation. This be-havior may be related to structural defects and dangling bonds.
In the present study, the structural properties which included the X-rays diffraction, and DSC, the mechanical properties, which include tensile test, threepoint bending test (Bending Test), hardness test and thermal conductivity of the polymers reinforced with calcite (PVC/CaCO3) at different temperature (25-40-80-
120-160-200-220) °C. The research results showed that the XC degree of X-ray diffraction decreased at high temperatures (220 ˚C), while the inter-polymerized polymer (PVC / CaCO3) increased at high temperatures. The DSC test results showed that the degree of crystallinity (XC) decreases at high temperatures (220 ˚C). The mechanical test results, their values were found to decrease at (
PbxCd1-xSe compound with different Pb percentage (i.e. X=0,
0.025, 0.050, 0.075, and 0.1) were prepared successfully. Thin films
were deposited by thermal evaporation on glass substrates at film
thickness (126) nm. The optical measurements indicated that
PbxCd1-xSe films have direct optical energy gap. The value of the
energy gap decreases with the increase of Pb content from 1.78 eV to
1.49 eV.
Thin films of CdS:Cu were deposited onto glass substrate temperature 400 °c. The optieal properties have been studied for Cds doped with (1,3, 8) wt% of Cu before and after Gamma irradiation. It was found that the irradiation caused an ( Frenkel defects) where the atom is displaced from its original site leaving vacancy and forming on interstitial atom. It was found the irradiation caused an absorption edge shifting towards long wavelength as a result of the increasing of Cu concentration.