Digital forensic is part of forensic science that implicitly covers crime related to computer and other digital devices. It‟s being for a while that academic studies are interested in digital forensics. The researchers aim to find out a discipline based on scientific structures that defines a model reflecting their observations. This paper suggests a model to improve the whole investigation process and obtaining an accurate and complete evidence and adopts securing the digital evidence by cryptography algorithms presenting a reliable evidence in a court of law. This paper presents the main and basic concepts of the frameworks and models used in digital forensics investigation.
Analysis system of sports players is very important for individuals in weightlifting. Assessment of player and strength is important for the performance of weightlifting. This paper proposes an analytical method for weightlifters with check-by-frame video. This analysis system can compute the major steps of seven positions in both snatch and clean and jerk methods in frame-video weightlifting monitoring of movements. Each user can compute the major steps of the seven positions of Hu moments among two frames in the video during training, and the Euclidian distance can be computed for the Hu moment values and lifting moment values in the snatch and clean and jerk methods during training. The outcome of the proposed system shows on efficien
... Show More<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynami
... Show MoreNowadays, a very widespread of smartphones, especially Android smartphones, is observed. This is due to presence of many companies that produce Android based phones and provide them to consumers at reasonable prices with good specifications. The actual benefit of smartphones lies in creating communication between people through the exchange of messages, photos, videos, or other types of files. Usually, this communication is through the existence of an access point through which smartphones can connect to the Internet. However, the availability of the Internet is not guaranteed in all places and at all times, such as in crowded places, remote areas, natural disasters, or interruption of the Internet connection for any reason. To create a
... Show MoreRecently, the increasing demand to transfer data through the Internet has pushed the Internet infrastructure to the nal edge of the ability of these networks. This high demand causes a deciency of rapid response to emergencies and disasters to control or reduce the devastating effects of these disasters. As one of the main cornerstones to address the data trafc forwarding issue, the Internet networks need to impose the highest priority on the special networks: Security, Health, and Emergency (SHE) data trafc. These networks work in closed and private domains to serve a group of users for specic tasks. Our novel proposed network ow priority management based on ML and SDN fullls high control to give the required ow priority to SHE dat
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreIn this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (
The electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and es
... Show MoreSome degree of noise is always present in any electronic device that
transmits or receives a signal . For televisions, this signal i has been to s the
broadcast data transmitted over cable-or received at the antenna; for digital
cameras, the signal is the light which hits the camera sensor. At any case, noise
is unavoidable. In this paper, an electronic noise has been generate on
TV-satellite images by using variable resistors connected to the transmitting cable
. The contrast of edges has been determined. This method has been applied by
capturing images from TV-satellite images (Al-arabiya channel) channel with
different resistors. The results show that when increasing resistance always
produced higher noise f
Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti