Recently, with the development multimedia technologies and wireless telecommunication, Voice over Internet Protocol, becomes widely used in communication between connecting people, VoIP allows people that are connected to the local network or the Internet to make voice calls using digital connection instead of based on the analog traditional telephone network. The technologies of Internet doesn’t give any security mechanism and there is no way to guarntee that the voice streams will be transmitted over Internet or network have not been intercepted in between. In this paper, VoIP is developed using stream cipher algorithm and the chaotic cryptography for key generator. It is based on the chaotic maps for generating a one-time random key used to encrypt each voice data in the RTP packet. Chaotic maps have been used successfully for encryption bulky data such as voice, image, and video, chaotic cryptography has good properties such as long periodicity, pseudo-randomness, and sensitivity to initial conditions and change in system parameters. A VoIP system was successfully implemented based on the on ITU-T G.729 for voice codec, as a multimedia encoding of Real-time Transport Protocol payload data, then, apply a proposed method to generate three-mixed logistic chaotic maps [1] and then analysis the encryption/ decryption quality measures for speech signal based this method. The experimental work demonstrates that the proposed scheme can provide confidentiality to voice data with voice over IP performance quality, minimum lost in transmitted packet, minimum average delay, and minimum jitter.
Stream ciphers are an important class of encryption algorithms. There is a vast body of theoretical knowledge on stream ciphers, and various design principles for stream ciphers have been proposed and extensively analyzed. This paper presents a new method of stream cipher, that by segmenting the plaintext into number of register then any of them combined to any other by using combination logic circuit (And, OR, JK, NOT, XOR), then using variant register in length as a key which provides security enhancement against attacks and then compare the strength of this method with RSA by calculaing the time necessary to get the original text by using the genetic algorithm. And the way that ha
... Show MoreCryptography is a major concern in communication systems. IoE technology is a new trend of smart systems based on various constrained devices. Lightweight cryptographic algorithms are mainly solved the most security concern of constrained devices and IoE systems. On the other hand, most lightweight algorithms are suffering from the trade-off between complexity and performance. Moreover, the strength of the cryptosystems, including the speed of the algorithm and the complexity of the system against the cryptanalysis. A chaotic system is based on nonlinear dynamic equations that are sensitive to initial conditions and produce high randomness which is a good choice for cryptosystems. In this work, we proposed a new five-dimensional of a chaoti
... Show MoreIn this paper a new technique based on dynamic stream cipher algorithm is introduced. The mathematical model of dynamic stream cipher algorithm is based on the idea of changing the structure of the combined Linear Feedback Shift Registers (LFSR's) with each change in basic and message keys to get more complicated encryption algorithm, and this is done by use a bank of LFSR's stored in protected file and we select a collection of LFSR's randomly that are used in algorithm to generate the encryption (decryption) key.
We implement Basic Efficient Criteria on the suggested Key Generator (KG) to test the output key results. The results of applying BEC prove the robustness and efficiency of the proposed stream cipher cryptosystem.
Most of the Internet of Things (IoT), cell phones, and Radio Frequency Identification (RFID) applications need high speed in the execution and processing of data. this is done by reducing, system energy consumption, latency, throughput, and processing time. Thus, it will affect against security of such devices and may be attacked by malicious programs. Lightweight cryptographic algorithms are one of the most ideal methods Securing these IoT applications. Cryptography obfuscates and removes the ability to capture all key information patterns ensures that all data transfers occur Safe, accurate, verified, legal and undeniable. Fortunately, various lightweight encryption algorithms could be used to increase defense against various at
... Show MoreRecently, much secured data has been sent across the internet and networks. Steganography is very important because it conceals secure data in images, texts, audios, protocols, videos, or other mediums. Video steganography is the method of concealing data in frames of video format. A video is a collection of frames or images used for hidden script messages. This paper proposes a technique to encrypt secret messages using DNA and a 3D chaotic map in video frames using the raster method. This technique uses three steps: Firstly, converting video frames into raster to extract features from each frame. Secondly, encryption of secret messages using encoded forms of DNA bases, inverse/inverse complements of DNA, a
... Show MoreThe technological development in the field of information and communication has been accompanied by the emergence of security challenges related to the transmission of information. Encryption is a good solution. An encryption process is one of the traditional methods to protect the plain text, by converting it into inarticulate form. Encryption implemented can be occurred by using some substitute techniques, shifting techniques, or mathematical operations. This paper proposed a method with two branches to encrypt text. The first branch is a new mathematical model to create and exchange keys, the proposed key exchange method is the development of Diffie-Hellman. It is a new mathematical operations model to exchange keys based on prime num
... Show MoreImages hold important information, especially in military and commercial surveillance as well as in industrial inspection and communication. Therefore, the protection of the image from abuse, unauthorized access, and damage became a significant demand. This paper introduces a new Beta chaotic map for encrypting and confusing the color image with Deoxyribonucleic Acid (DNA) sequence. First, the DNA addition operation is used for diffusing each component of the plain image. Then, a new Beta chaotic map is used for shuffling the DNA color image. In addition, two chaotic maps, namely the proposed new Beta and Sine chaotic maps, are used for key generation. Finally, the DNA XOR operation is applied between the generated key and shuffled DNA i
... Show MoreChaotic systems have been proved to be useful and effective for cryptography. Through this work, a new Feistel cipher depend upon chaos systems and Feistel network structure with dynamic secret key size according to the message size have been proposed. Compared with the classical traditional ciphers like Feistel-based structure ciphers, Data Encryption Standards (DES), is the common example of Feistel-based ciphers, the process of confusion and diffusion, will contains the dynamical permutation choice boxes, dynamical substitution choice boxes, which will be generated once and hence, considered static,
While using chaotic maps, in the suggested system, called
the research ptesents a proposed method to compare or determine the linear equivalence of the key-stream from linear or nonlinear key-stream
In this paper, we construct a new mathematical system as Multiplicative Cyclic Group (MCG), called a New Digital Algebraic Generator (NDAG) Unit, which would generate digital sequences with good statistical properties. This new Unit can be considered as a new basic unit of stream ciphers.
A (NDAG) system can be constructed from collection of (NDAG) units using a Boolean function as a combining function of the system. This system could be used in cryptography as like as Linear Feedback Shift Register (LFSR) unit. This unit is basic component of a stream cipher system.