The main targets for using the edge detection techniques in image processing are to reduce the number of features and find the edge of image based-contents. In this paper, comparisons have been demonstrated between classical methods (Canny, Sobel, Roberts, and Prewitt) and Fuzzy Logic Technique to detect the edges of different samples of image's contents and patterns. These methods are tested to detect edges of images that are corrupted with different types of noise such as (Gaussian, and Salt and pepper). The performance indices are mean square error and peak signal to noise ratio (MSE and PSNR). Finally, experimental results show that the proposed Fuzzy rules and membership function provide better results for both noisy and noise-free images.
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreIn cognitive radio networks, there are two important probabilities; the first probability is important to primary users called probability of detection as it indicates their protection level from secondary users, and the second probability is important to the secondary users called probability of false alarm which is used for determining their using of unoccupied channel. Cooperation sensing can improve the probabilities of detection and false alarm. A new approach of determine optimal value for these probabilities, is supposed and considered to face multi secondary users through discovering an optimal threshold value for each unique detection curve then jointly find the optimal thresholds. To get the aggregated throughput over transmission
... Show MoreThe current research aims to detect the level of suicidal tendencies among secondary school students in terms of gender and educational stage (intermediate school students and high school students). The researcher adopted Al Hafeez's (2017) scale for suicidal tendencies, it consists of (57) items including six domains, namely: suicidal ideation, social motives for suicide, tendency to self-harm, desire for death, indifference and pessimism about life, willingness to commit suicide. The scale was modified to be (42) items after it was exposed to a group of experts. The scale was applied to a sample of (200) male and female students from secondary schools in Baghdad Governorate (Karkh - Rusafa) for the academic year 2021-2022. The results
... Show MoreSocial Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota
... Show MoreExperimental results for the density of states of hydrogenated amorphous silicon due to Jackson et al near the valence and conduction band edges were analyzed using Levenberg-Marquardt nonlinear fitting method. It is found that the density of states of the valence band and the conduction band can be fitted to a simple power law, with a power index 0.60 near the valence band edge, and 0.55 near the conduction band edge. These results indicate a modest but noticeable deviation from the square root law (power index=0.5) which is found in crystalline semiconductors. Analysis of Jackson et al density of states integral J(E) data over about (1.4 eV) of photon energy range, showed a significant fit to a simple power law with a power index of 2.11
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreExcessive torque and drag can be critical limitation during drilling highly deviated oil wells. Using the modeling is regarded as an invaluable process to assist in well planning and to predict and prevent drilling problems. Identify which problems lead to excessive torque and drag to prevent cost losses and equipment damage. Proper modeling data is highly important for knowing and prediction hole problems may occur due to torque and drag and select the best method to avoid these problems related to well bore and drill string. In this study, Torque and drag well plan program from landmark worldwide programming group (Halliburton Company) used to identify hole problems.one deviated well in Zubair oil fields named, ZB-250 selected for anal
... Show MoreExcessive torque and drag can be critical limitation during drilling highly deviated oil wells. Using the modeling is regarded as an invaluable process to assist in well planning and to predict and prevent drilling problems. Identify which problems lead to excessive torque and drag to prevent cost losses and equipment damage. Proper modeling data is highly important for knowing and prediction hole problems may occur due to torque and drag and select the best method to avoid these problems related to well bore and drill string. In this study, Torque and drag well plan program from landmark worldwide programming group (Halliburton Company) used to identify hole problems.one deviated well in Zubair oil fields named, ZB-250 selected for
... Show MoreThis research presents the concepts of compatibility and edge spaces in