The main targets for using the edge detection techniques in image processing are to reduce the number of features and find the edge of image based-contents. In this paper, comparisons have been demonstrated between classical methods (Canny, Sobel, Roberts, and Prewitt) and Fuzzy Logic Technique to detect the edges of different samples of image's contents and patterns. These methods are tested to detect edges of images that are corrupted with different types of noise such as (Gaussian, and Salt and pepper). The performance indices are mean square error and peak signal to noise ratio (MSE and PSNR). Finally, experimental results show that the proposed Fuzzy rules and membership function provide better results for both noisy and noise-free images.
Background: Transitional cell carcinoma of the urinary bladder is one of the important malignancies in both sex groups .It is considered as a heterogenous neoplasm with different
biological behavior, in which the majority are early non invasive with tendency for recurrence and some may progress to invasive tumor. An important clinicopathological features are ,the tumor stage and histological grade which are used as prognostic parameters of the tumor and play an important role in therapy. Due to the subjectivity of the histological grading , the reproducibility was low . Many studies showed the value of quantitative analysis of the tumor as an important method in determining the recurrence of the tumor and
Colonoscopy is a popular procedure which is used to detect an abnormality. Early diagnosis can help to heal many patients. The purpose of this paper is removing/reducing some artifacts to improve the visual quality of colonoscopy videos to provide better information for physicians. This work complements a series of work consisting of three previously published papers. In this paper, optic flow is used for motion compensation, where a number of consecutive images are registered to integrate some information to create a new image that has/reveals more information than the original one. Colon images were classified into informative and noninformative images by using a deep neural network. Then, two different strategies were use
... Show MoreIn this paper a method to determine whether an image is forged (spliced) or not is presented. The proposed method is based on a classification model to determine the authenticity of a tested image. Image splicing causes many sharp edges (high frequencies) and discontinuities to appear in the spliced image. Capturing these high frequencies in the wavelet domain rather than in the spatial domain is investigated in this paper. Correlation between high-frequency sub-bands coefficients of Discrete Wavelet Transform (DWT) is also described using co-occurrence matrix. This matrix was an input feature vector to a classifier. The best accuracy of 92.79% and 94.56% on Casia v1.0 and Casia v2.0 datasets respectively was achieved. This pe
... Show MoreLike the digital watermark, which has been highlighted in previous studies, the quantum watermark aims to protect the copyright of any image and to validate its ownership using visible or invisible logos embedded in the cover image. In this paper, we propose a method to include an image logo in a cover image based on quantum fields, where a certain amount of texture is encapsulated to encode the logo image before it is included in the cover image. The method also involves transforming wavelets such as Haar base transformation and geometric transformation. These combination methods achieve a high degree of security and robustness for watermarking technology. The digital results obtained from the experiment show that the values of Peak Sig
... Show MoreImage segmentation is a basic image processing technique that is primarily used for finding segments that form the entire image. These segments can be then utilized in discriminative feature extraction, image retrieval, and pattern recognition. Clustering and region growing techniques are the commonly used image segmentation methods. K-Means is a heavily used clustering technique due to its simplicity and low computational cost. However, K-Means results depend on the initial centres’ values which are selected randomly, which leads to inconsistency in the image segmentation results. In addition, the quality of the isolated regions depends on the homogeneity of the resulted segments. In this paper, an improved K-Means
... Show MoreIn previous our research, the concepts of visible submodules and fully visible modules were introduced, and then these two concepts were fuzzified to fuzzy visible submodules and fully fuzzy. The main goal of this paper is to study the relationships between fully fuzzy visible modules and some types of fuzzy modules such as semiprime, prime, quasi, divisible, F-regular, quasi injective, and duo fuzzy modules, where under certain conditions it has been proven that each fully fuzzy visible module is fuzzy duo. In addition, there are many various properties and important results obtained through this research, which have been illustrated. Also, fuzzy Artinian modules and fuzzy fully stable modules have been introduced, and we study the rel
... Show MoreIn this paper, we introduce and study the notions of fuzzy quotient module, fuzzy (simple, semisimple) module and fuzzy maximal submodule. Also, we give many basic properties about these notions.
In this paper, the definition of fuzzy anti-inner product in a linear space is introduced. Some results of fuzzy anti-inner product spaces are given, such as the relation between fuzzy inner product space and fuzzy anti-inner product. The notion of minimizing vector is introduced in fuzzy anti-inner product settings.
Our goal in the present paper is to introduce a new type of fuzzy inner product space. After that, to illustrate this notion, some examples are introduced. Then we prove that that every fuzzy inner product space is a fuzzy normed space. We also prove that the cross product of two fuzzy inner spaces is again a fuzzy inner product space. Next, we prove that the fuzzy inner product is a non decreasing function. Finally, if U is a fuzzy complete fuzzy inner product space and D is a fuzzy closed subspace of U, then we prove that U can be written as a direct sum of D and the fuzzy orthogonal complement of D.
In this article, we study some properties of anti-fuzzy sub-semigroup, anti fuzzy left (right, two sided) ideal, anti fuzzy ideal, anti fuzzy generalized bi-ideal, anti fuzzy interior ideals and anti fuzzy two sided ideal of regular semigroup. Also, we characterized regular LA-semigroup in terms of their anti fuzzy ideal.